pcb
Home > Blog

Archive for the ‘PCB News’ Category

Fiberglass Circuit Board: Types, Features & Applications
星期二, 22 4 月, 2025

Fiberglass circuit board is the backbone of today’s electronics. These boards support and connect components in almost every electronic device, from consumer gadgets to industrial control systems. Unlike ordinary materials, fiberglass brings strength and stability. It holds up well under heat, resists moisture, and stays firm under mechanical stress.

What Are Fiberglass Circuit Boards?

A fiberglass circuit board is a type of printed circuit board (PCB) made using a base material reinforced with glass fibers and resin—typically epoxy. This combination results in a strong, heat-resistant, and electrically stable platform used to mount and interconnect electronic components.

Also called printed circuit board fiberglass, these boards dominate the electronics industry thanks to their durability and consistent performance. From mass-produced gadgets to high-end machinery, fiberglass boards provide the structural and electrical backbone that keeps everything working smoothly.

Fiberglass Circuit Board: Types, Features & Applications

What Are Fiberglass Boards Made Of?

Fiberglass boards are made from fine strands of glass spun into a fabric. This fabric, typically known as glass cloth, is then saturated with epoxy resin. Once hardened, the composite becomes the core insulating layer in a fiberglass circuit board.

The most common material is FR4. It includes:

  • Woven E-glass (Electrical-grade glass): Provides electrical insulation and dimensional stability.
  • Epoxy resin: Bonds the glass fibers and maintains structure under thermal stress.
  • Copper foil: Laminated onto one or both sides to create electrical pathways.

Together, these elements create an electrical fiberglass board that is tough, heat-resistant, and non-conductive at its core.

Types of Fiberglass Circuit Boards

Fiberglass circuit boards aren’t one-size-fits-all. They come in multiple variations to meet different design and performance needs. Whether you’re designing a basic remote control or a complex radar module, there’s a fiberglass board fit for the job.

  • Single Layer Fiberglass Circuit Board

This is the most basic type. It has copper traces on only one side of the board. It’s often used in low-cost consumer electronics, LED lights, and household appliances. Despite its simplicity, the fiberglass circuit board structure keeps it durable and stable.

Single Layer Fiberglass Circuit Board
  • Double Layer Fiberglass Circuit Board

With copper layers on both sides and vias connecting them, this board offers more routing space and better performance. It’s a popular choice for audio equipment, industrial sensors, and power supplies. These boards balance cost with performance and are widely produced by fiberglass circuit board manufacturers worldwide.

Double Layer Fiberglass Circuit Board
  • Multilayer Fiberglass Circuit Board

These contain three or more layers of fiberglass and copper laminated together. They are essential for smartphones, routers, and advanced computing devices. With increased layer count comes better signal control and component density.

Multilayer Fiberglass Circuit Board
  • HDI Fiberglass Circuit Board

High-Density Interconnect (HDI) boards pack more functionality into smaller areas. They use microvias, blind vias, and fine lines to boost performance without increasing board size. HDI designs often use printed circuit board fiberglass materials for strength and tight tolerances.

HDI Fiberglass Circuit Board
  • High Frequency Fiberglass Circuit Board

For RF or microwave applications, standard fiberglass isn’t always enough. Specialized fiberglass composites with low dielectric loss are used. These boards are perfect for radar systems, antennas, and satellite communication.

High Frequency Fiberglass Circuit Board
  • Rigid-Flexible Fiberglass Circuit Board

Combining rigid fiberglass sections with flexible polyimide layers, these hybrid boards offer both structural support and flexibility. They’re widely used in wearables, military electronics, and compact medical devices.

Rigid-Flexible Fiberglass Circuit Board

Features of Using Fiberglass Circuit Board

Fiberglass circuit boards offer several unmatched advantages. These features help explain why they’re so common in nearly every electronic product.

  • Thermal Stability: Fiberglass holds up well under heat. It won’t warp or delaminate under typical operating conditions.
  • Dimensional Stability: Even in humid or fluctuating environments, the board keeps its shape.
  • Electrical Insulation: The glass fibers prevent current leakage and minimize signal loss.
  • Mechanical Strength: These boards don’t crack easily. They can take a beating during assembly or usage.
  • Low Fiberglass Board Price: Compared to ceramics or PTFE substrates, fiberglass board price is much lower—without major performance tradeoffs.

Why Is Fiberglass Used in Motherboards?

Motherboards are the nerve center of any computing device. They require a substrate that’s flat, stable, and electrically inert. Fiberglass checks all those boxes. Its woven glass core resists bending and warping over time, ensuring that pins, sockets, and solder joints stay aligned. It also helps dissipate heat generated by processors and other high-power components.

Motherboards also demand multi-layered structures. Only multilayer fiberglass circuit boards can deliver the routing density needed for complex connections between CPU, RAM, GPU, and other modules. That’s why fiberglass remains the default material for virtually all desktop and laptop motherboards.

What Is Fiberglass Board Used For?

Beyond motherboards, electrical fiberglass boards are everywhere:

  • Consumer Electronics: Smartphones, TVs, game consoles.
  • Automotive Systems: Engine controls, infotainment, safety modules.
  • Industrial automation: Robotics, factory controls, and power distribution.
  • Healthcare equipment: Monitors, diagnostic tools, and imaging devices.
  • Telecom Infrastructure: Routers, switches, and antennas.
  • Telecommunication devices: Routers, modems, and base stations.
  • LED Lighting: Strip lights, bulb circuits, streetlamps.
  • Aerospace Systems: Flight controls, navigation, radar electronics.

Thanks to their adaptability and performance, fiberglass boards can be customized for nearly any electrical task. This is why fiberglass circuit board manufacturers remain in high demand globally.

Why Is Fiberglass Hazardous?

Though highly useful, fiberglass isn’t without precautions. During manufacturing, cutting or sanding fiberglass can release microscopic glass particles. These can irritate the skin, eyes, and respiratory system. That’s why workers must wear protective gear in production settings.

However, once the board is sealed and installed, it poses minimal risk. Finished electrical fiberglass boards are stable, safe, and inert under normal use conditions. They do not emit toxins or degrade during product life.

Is Glass Fiber the Same as Fiberglass?

Technically, yes—glass fiber and fiberglass refer to the same material. “Glass fiber” usually describes the raw filament or strands. “Fiberglass” refers to the composite made from glass fibers and resin.

In PCB manufacturing, the terms are often used interchangeably. Whether you say printed circuit board fiberglass or glass fiber PCB, the meaning remains consistent: a reliable, heat-resistant circuit platform. While the terms are related, in practice, fiberglass is the final product used in PCBs, not just the raw glass fiber.

FAQs

Q1: Is fiberglass better than FR2 in circuit boards?

Yes. Fiberglass (FR4) offers higher strength, better insulation, and improved heat tolerance compared to FR2 paper-based boards.

Q2: How much does a fiberglass board cost?

The fiberglass board price varies by layer count, size, and copper thickness. Single-layer boards may cost less than $1 per piece, while multilayer HDI boards are higher.

Q3: Can fiberglass circuit boards handle high power?

Yes. With proper copper thickness and thermal management, fiberglass PCBs handle moderate to high power loads reliably.

Q4: Are fiberglass boards environmentally friendly?

Most are ROHS-compliant. However, disposal must be handled properly due to the epoxy content.

Q5: Who are top fiberglass circuit board manufacturers?

Top producers include Best Technology, TTM Technologies, and PCBWay. Look for ISO-certified factories with full in-house fabrication.

Whether you’re building a simple LED board or a complex communication device, printed circuit board fiberglass options are there to support your design.

Looking for a trustworthy partner to supply high-quality fiberglass PCBs? Best Technology has more than 18 years of experience manufacturing standard and custom circuit boards, including single to multilayer designs, HDI, and high-frequency variants. Our in-house production facilities are ISO9001, IATF16949, AS9100D and UL certified, ensuring that every board meets global quality standards. We pride ourselves on delivering fast lead times, customized solutions, and exceptional technical support that help our clients stay ahead in an ever-evolving market.

You may also like

Copper Foil PCB | HTE vs RTF Copper Foil | Copper Foil PCB Manufacturers
星期一, 14 4 月, 2025

What is Copper Foil PCB?

A copper foil PCB is a type of printed circuit board where copper foil is laminated onto the base material to form the conductive layer. This copper layer is what carries electrical signals and power between different parts of the board. Without it, a PCB wouldn’t function at all.

The copper is typically applied through lamination, where thin sheets of copper foil are bonded to a substrate, usually made of fiberglass-reinforced epoxy resin like FR4. This copper layer is then etched to create precise paths, known as traces, that connect components across the board.

There are also different thicknesses of copper foil used, which affect the board’s ability to carry current and dissipate heat. The standard thickness is usually 1 oz/ft² (about 35μm), but heavier copper options like 2 oz or 3 oz are often used in power electronics or high-temperature applications.

Copper Foil PCB | HTE vs RTF Copper Foil | Copper Foil PCB Manufacturers

What is the Purpose of Copper Foil in PCB?

The main role of copper foil is to carry electric current across the circuit. It’s the path for data, signals, and energy. Without copper foil, there would be no communication between components.

Besides that, copper foil helps in thermal transfer. When current flows, heat is generated. Copper helps in spreading this heat evenly, reducing hot spots. That’s key in designs with dense parts or power-hungry chips. Also, copper layers add mechanical strength to the board, supporting solder joints and reducing flex.

What are the Different Types of Copper Foils?

Copper foil types vary based on how they’re made, how rough they are, and what kind of performance they offer in real PCB applications. Choosing the right type can make a big difference in signal clarity, layer adhesion, and long-term reliability. Let’s see the most common types used in the PCB industry:

What are the Different Types of Copper Foils?

1. Electrodeposited (ED) Copper Foil

Electrodeposited copper foil is the most widely used type in standard rigid PCBs. It’s made through an electrochemical process where copper ions are deposited onto a rotating stainless steel drum. The side in contact with the drum becomes smooth, while the other side is naturally rough.

ED copper foil is great for multilayer rigid boards, consumer electronics, and automotive circuits. When treated with surface chemicals, it bonds well to laminates and resists layer separation.

2. Rolled Annealed (RA) Copper Foil

RA copper foil is made by mechanically rolling solid copper into very thin sheets and then annealing it (heating and cooling) to relieve stress. You’ll find RA copper in flex circuits, flex-rigid PCBs, wearable electronics, and mobile devices. When boards must flex without breaking, RA is the go-to.

3. Reverse Treated Foil (RTF)

RTF is a type of ED foil where the shiny side is treated instead of the rough side. This treatment adds micro-etching or chemical bonding to enhance adhesion between the copper and the laminate. RTF is popular in HDI (High-Density Interconnect) boards, high-speed digital circuits, and RF designs where signal loss must be controlled.

4. Very Low Profile (VLP) and Ultra-Low Profile (ULP) Copper Foils

These are smoother versions of standard ED foils, created to reduce conductor roughness. VLP and ULP foils are still electrodeposited, but they go through extra steps to minimize surface peaks and valleys. They are used in high-speed digital systems, data centers, 5G antennas, and any application where clean signal transmission matters.

5. High-Temperature Elongation (HTE) Copper Foil

HTE copper foil is a variant of ED copper, enhanced for high thermal and mechanical stress. It resists cracking under repeated heating and cooling cycles. HTE is preferred for automotive, power electronics, and multilayer PCBs that go through reflow soldering or see high current loads.

6. Resin-Coated Copper Foil (RCC)

RCC combines copper foil with a thin layer of resin. This resin bonds directly to the core without needing prepreg sheets, which simplifies the lamination process. Mainly in mobile phones, compact devices, or where thin layers and high accuracy are needed.

Here is a summary comparison table between them:

Copper Foil TypeStrengthFlexibilitySmoothnessSignal PerformanceApplication
EDHighLowModerateStandardRigid PCBs
RAMedium  HighHighGoodFlex PCBs
RTFHighMediumTreated  ExcellentRF, HDI
VLP/ULP  MediumMediumVery HighSuperior5G, high-speed
HTEVery HighLow  ModerateStandardPower boards
RCCLowMediumHighGoodThin mobile boards

What is the Roughness of Copper Foil in PCB?

‌The roughness of copper foil on PCB ‌ refers to the unsmoothness of the copper foil surface, Copper foil roughness affects how well signals move through the board. In high-speed designs, surface texture matters a lot. Rough copper increases insertion loss. This weakens the signal and causes noise.

What is the Roughness of Copper Foil in PCB?

Roughness is usually measured in microns, which is usually quantified by Ra, Rz and Rq. Lower values are better for RF or high-speed data.

  • ‌Ra‌: The arithmetic average of the absolute value of the contour deviation over the sampling length, applicable to copper foil surface.
  • ‌Rz‌: Sum of the average of the 5 largest profile peak heights and the average of the 5 largest profile valley depths over the sampling length for copper foil rough surface.
  • ‌Rq‌: Means RMS (Root means square) value, it also is a roughness index.‌

PCB Copper Thickness Chart

Copper thickness is often given in ounces per square foot. But that doesn’t mean much until you convert it. Here’s a helpful chart:

Copper Weight (oz/ft²)Thickness (µm)Thickness (mil)
0.5 oz~17 µm~0.67 mil
1 oz~35 µm~1.37 mil
2 oz~70 µm~2.74 mil
3 oz~105 µm~4.11 mil
4 oz~140 µm~5.48 mil
  • For single & double sided PCB, the copper foil thickness is about 35um, 50um, 70um;
  • For multi-layer PCB, its outer layer copper thickness is 35um, and inner layer copper thickness is 17.5um (1/2oz).

Designers choose copper weight based on current flow and thermal limits. Thicker copper is used in power PCBs. Thinner layers are more common in signal circuits or HDI boards.

HTE vs RTF copper foil

When it comes to choosing the right copper foil for high-performance PCBs, HTE (High-Temperature Elongation) and RTF (Reverse Treated Foil) are two of the most commonly used options.

  • HTE Copper Foil

HTE copper foil is a specially processed electrodeposited foil that’s engineered to handle high thermal and mechanical stress. The term “high-temperature elongation” refers to the foil’s improved flexibility and stretch resistance when exposed to heat.

It’s treated chemically to improve adhesion strength, making it more reliable during multiple soldering cycles. The surface has a consistent profile that bonds well with different dielectric materials.

Key Features of HTE Foil:

  • Strong peel strength
  • Durable under repeated heating
  • Excellent for plated-through-hole (PTH) reliability
  • Withstands lamination and solder reflow cycles
  • RTF Copper Foil

RTF, or Reverse Treated Foil, is also made through an electrodeposition process, but with one key difference: the shiny side gets treated instead of the rough side. This treatment applies a fine, uniform microstructure that enhances bonding without creating high surface roughness.

This smoother surface makes RTF a preferred option in high-speed signal and RF PCB applications where low signal loss is critical.

Key Features of RTF Foil:

  • Lower surface roughness
  • Better electrical performance at high frequencies
  • Improved signal integrity
  • Balanced peel strength and performance

PCB Copper Electrical Conductivity

Copper has one of the highest electrical conductivities of any metal. That’s why it’s the go-to choice for PCBs. The typical conductivity of copper used in PCBs is about 5.8 x 10⁷ S/m (Siemens per meter).

This high conductivity allows small traces to carry high current with low voltage drop. It also reduces signal distortion, which is key in high-speed or RF applications.

Still, conductivity depends on purity. Most PCB foils use 99.9% pure copper. If copper is oxidized or poorly handled, conductivity drops. That’s why clean processes and proper lamination are important.

How to Calculate Copper Thickness in PCB?

The thickness of copper in PCB can be calculated by the following methods:

1. Calculation of copper plating thickness by current density and plating time:

Plating thickness (um) = current density (ASF) x plating time (min) x plating efficiency × 0.0202‌. This formula takes into account the amount of electricity, equivalent, molar mass, density and other factors. The specific calculation process involves the product of current density, plating time and plating efficiency, then multiplying by a factor 0.0202‌.

2. Thickness calculated by weight of copper foil:

In the common option “copper-covered FR4, single-sided,1 oz”,1 oz indicates the thickness of the copper foil. 1 oz = 28.35 g/ft², copper foil density of 8.93 g/cm³, 1 square foot = 929.03 cm². Thus, 1 oz copper foil thickness = 28.35/8.93/929.03 ≈ 35um or 1.35mil ‌. Common PCB thicknesses include 1/2Oz = 17.5um, 1 oz = 35um, 2oz = 70um, and 3 oz = 105um.

How to Calculate Copper Thickness in PCB?

In addition to these two methods, you can also use our online pcb copper thickness calculator to calculate the copper thickness.

online pcb copper thickness calculator

Copper Foil PCB Manufacturers

Many trusted copper foil PCB manufacturers serve global markets. Some of the top names include:

1. Isola Group: Known for high-frequency and low-loss materials.

2. Kingboard: One of the world’s biggest copper clad laminate suppliers.

3. Ventec International: Offers low-profile copper foils and thermal substrates.

4. Mitsui Mining & Smelting: A top name in RTF and ultra-smooth foils.

5. Best Technology: Based in Asia, with 18+ years in the industry. We supply high-quality copper foil PCBs, from 0.5 oz to over 6 oz.

At Best Technology, we bring over 18 years of hands-on experience. We support standard and custom copper weights, including heavy copper for high-current boards. Our RTF and HTE options fit both signal-sensitive and power-heavy needs.

With fast lead times, in-house testing, and global delivery, we’re more than just a PCB maker. We’re your reliable partner for copper foil PCB solutions. Reach out today to explore your next project with confidence.

You may also like

Fast turn PCB Board, Fast Turn Circuit Board Manufacturing
星期一, 14 4 月, 2025

What Is a Fast Turn PCB Board?

A fast turn PCB board is a printed circuit board manufactured and delivered in a short time, typically within 24 to 72 hours. These quick deliveries help speed up product development, especially during prototyping and pre-production stages. It’s a solution many engineers rely on when time is tight.

Engineers use fast turn PCBs for product validation. They want to see if a new circuit design performs well before moving to mass production. So, getting a board in days instead of weeks can make a huge difference.

Fast turn PCB Board, Fast Turn Circuit Board Manufacturing

What Are the Benefits of Fast Turn PCB Orders?

Ordering a fast turn PCB board brings several advantages to the table.

First, it speeds up your product timeline. You don’t need to wait weeks to test your circuit. If changes are needed, you can get a revised board quickly and keep things moving forward.

Second, it helps reduce project risks. The faster you test, the faster you detect potential design errors. Early detection saves money and prevents delays.

Third, it improves decision-making. With working samples in hand, your team can test real performance. It’s better than guessing or using simulation data only.

Lastly, fast turn options give your company a competitive edge. Getting to market faster often means better sales and stronger customer trust.

Best Technology’s Typical Turnaround Time for Fast Turn PCBs

At Best Technology, we understand the value of time. That’s why we’ve optimized our process to support urgent PCB orders.

For standard 2-layer fast turn PCBs, we usually deliver in 24 to 48 hours. For 4-layer boards, it may take 48 to 72 hours depending on complexity. Our team works around the clock to meet those deadlines.

Even for more complex boards — such as HDI or metal-core PCBs — we still maintain one of the quickest turnaround times in the industry. And we don’t compromise on quality. Each board goes through full inspection and electrical testing before it reaches you. The detailed turnaround time is:

Prototype(<1m²) Layers   Normal Service   Expedited Service
      FR4 PCB1 Layer3-4 days24 hours
2 Layers4-6 days24 hours
4 Layers8-10 days48 hours
6 Layers8-10 days72 hours
8 Layers10~14 days72-96 hours
10 Layers14-18 days72-96 hours
HDI (1+N+1 2+N+2)2.5 – 3.5weeksTBD (depend on design)

We don’t just print boards fast. We manage the process with strict planning, from materials to delivery. That’s why so many clients come back to us for every new project.

Factors That Affect the Turnaround Time of Prototypes

Even though we push for speed, several factors can influence how long a fast turn circuit board takes to produce. Knowing these helps avoid delays.

  • Circuit Board Design and Test Procedures

The design stage impacts everything. A simple, well-structured layout speeds up processing. Complex routing, fine-pitch components, or tight spacing can add extra review time.

Test procedures matter too. If a special test is needed, like impedance control or functional test setup, it adds to the schedule. Providing clear instructions in advance helps us prepare and avoid delays.

  • Lamination Cycles

For multilayer boards, each lamination cycle takes time. A 4-layer multi-layer board needs one cycle, while an 8-layer may need several. More layers mean longer pressing times and more careful control.

Quick builds still go through these steps. We just start immediately and plan shifts to manage it faster. That’s why sharing the full stack-up early is so important.

  • Via-in-Pad Plated Over

Via-in-pad designs are helpful for high-density layouts. But they add a few extra steps in production. We need to drill, plate, and fill those vias carefully. After that, we cap and flatten them before plating the surface.

This extra effort adds time compared to standard vias. If your board uses VIPPO, it’s best to let us know upfront so we can fast-track these processes.

  • Fabrication Drawing Specifications

Precise drawings help avoid back-and-forth communication. If drawings are unclear or missing details like dimensions, tolerances, or hole types, we’ll need to clarify before production.

Clear drawings lead to fast fabrication. They also reduce the risk of mistakes. That’s why we suggest using IPC-2581 or Gerber X2 format with notes included.

  • Surface Finish

Surface finish choice also plays a role. ENIG, OSP, HASL, or hard gold all have different process times. For example, ENIG takes longer than HASL because it involves two plating steps.

If speed matters most, we can recommend the best finish based on your needs. Some finishes can still meet performance goals while shaving off hours from the process.

  • Assembly Drawings and Notes

If you also need PCB assembly, complete documentation is key. Missing part placements, unclear polarity marks, or unreferenced BOM items slow everything down.

Providing all files in one go—BOM, pick and place, centroid file, and notes—helps avoid delays. When everything’s ready, our SMT line can move fast and precise.

Fast Turn Circuit Board Manufacturing

Manufacturing a fast turn circuit board isn’t about rushing. It’s about knowing how to work smart, reduce waste, and prevent rework.

At Best Technology, we keep a reserve stock of core materials and prepreg. That way, we can start production immediately without waiting for supply.

We also use automatic routing, inline AOI, and robotic drilling machines to keep operations smooth. Our teams work in shifts, so production doesn’t stop, even at night or on holidays.

Every department is synchronized. CAM engineers review your files fast, material control prepares the stack-up, and QA teams check every step. That’s how we manage fast output without losing accuracy.

We also run a parallel system for urgent jobs. These special jobs go into our “fast-lane” line, separated from standard orders. This ensures time-sensitive boards don’t get stuck behind large-volume orders.

Why Should You Choose Best Technology as Your Preferred Partner?

Choosing a fast turn PCB partner isn’t just about delivery speed. It’s about trust, communication, and consistent results. Best Technology stands out because we offer more than just fast service.

  • Experienced team: We’ve been in this field for over 18 years. Our engineers know what works and how to prevent problems early.
  • Clear communication: Our team responds quickly. We give you updates, clarify questions, and solve problems before they become delays.
  • Flexible production: Whether you need 1 board or 10,000, we scale easily. We also support special needs like rigid-flex, metal core, or ceramic boards with fast turn options.
  • Global shipping: We work with trusted logistics partners. Boards reach you safely and on time, even across borders.
  • Reliable quality: Every board goes through full inspection, AOI, flying probe, and E-test. Even fast jobs go through our strict quality checks.

When you work with Best Technology, you get speed, support, and security in every step. That’s why companies in medical, industrial, and automotive industries continue to rely on us.

You may also like

PCB Fabrication Manufacturer, Prototype, Design and Assembly
星期五, 11 4 月, 2025

Best Technology is your trusted partner for comprehensive PCB solutions — from initial concept to final product. With over 18 years of experience, we offer one-stop services that cover the full PCB lifecycle, ensuring high quality, fast turnaround, and competitive pricing. Why customers prefer us:

  • Free DFM/DFA check
  • Free Design Guideline
  • 25,000m2 production capacity
  • 2 Hours quick response
  • Quote within 12 hours
  • Online support 24/7
  • Transparent order tracking from first day to final delivery
  • Military-grade quality boards with strict testing and IPC standards
  • One-stop services from layout to turnkey assembly
  • Engineering support to optimize your design for performance and cost
  • Global delivery and localized service teams
  • Reliable fabrication with IPC Class 2/3 standards
  • ISO13485, ISO9001, AS9100D, IATF16949 certificated

Whether you’re a startup building your first prototype or a large OEM scaling up production, Best Technology is your reliable PCB partner.

PCB Fabrication Manufacturer, Prototype, Design and Assembly

Our Core Services – From Design to Assembly

We provide a wide range of services to support your project at every stage:

  • PCB Design & DFM Check – We don’t just manufacture—we help you build better boards. Send us your layout or concept, and our senior engineers will review your files for manufacturability, improving your design before it hits the production line.
  • PCB Fabrication – Single-layer, multi-layer, HDI, aluminum-based, or ceramic—we fabricate PCBs of all complexities. Our in-house plant supports quick turnarounds and strict quality control for every batch.
  • PCB Prototype – Need your prototype in 24–72 hours? We’ve got your back. Ideal for engineers in the development phase, we offer fast PCB prototyping with full traceability, fly-probe testing, and surface finish options.
  • PCB Assembly – Our turnkey PCB assembly service covers everything from component sourcing, SMT/DIP soldering, to functional testing. You send us your BOM and Gerber—we handle the rest.
  • Components Sourcing – Reliable sourcing of original, competitive prices, traceable electronic components.
  • IC Programming – Pre-programming and testing of integrated circuits to streamline your assembly process.

What PCB Types Does Best Technology Manufactured?

We are capable of manufacturing a wide variety of PCB types, including but not limited to:

  • FR4 PCBs (high speed PCB, IC substrate, high TG PCB, extra thin PCB, our special semi-rigid flex PCB and so on.)
  • Metal Core MCPCBs (aluminum based PCB, copper clad PCB, sinkpad PCB, thermoelectric copper separate PCB)
  • Ceramic PCBs (AlN, BeO, Al₂O₃, Zro2)
  • Flexible and Rigid-Flex PCBs, FFC, Dual access PCB
  • HDI PCBs
  • High-Frequency PCBs
  • Heavy Copper PCBs
  • Busbar PCBs
  • Hybrid Substrate PCBs
PCB Fabrication Manufacturer, Prototype, Design and Assembly

Whether you need high-reliability boards for aerospace, thermally conductive boards for LEDs, or RF boards for communication devices, we have the capability to deliver.

PCB Prototype Lead Time

We understand how crucial speed is in product development. Our standard PCB prototype lead time is:

  • Single-layer & double-layer PCBs: as fast as 24 hours
  • 4-layer PCBs: typically 48–72 hours
  • 6-layer or above: around 3–5 working days, depending on complexity

Below is a detailed prototype lead time sheet at Best Technology, the expedited options are available to meet urgent project deadlines.

Prototype(<1m²) Layers   Normal Service   Expedited Service
      FR4 PCB1 Layer3-4 days24 hours
2 Layers4-6 days24 hours
4 Layers8-10 days48 hours
6 Layers8-10 days72 hours
8 Layers10~14 days72-96 hours
10 Layers14-18 days72-96 hours
HDI (1+N+1 2+N+2)2.5 – 3.5weeksTBD (depend on design)

Best Technology’s PCB Assembly Capabilities

And as a one-stop service provider to customers, we offer PCB assembly service as well, such as:

  • SMT (Surface-Mount Technology)
  • DIP (Dual In-line Package)
  • Reflow Soldering (for SMD components)
  • Wave Soldering (for DIP components)
  • Hand Soldering (connectors, through hole components)
  • Mixed Assembly Technologies
  • Wire Harness Assembly
  • PCBA Testing
  • Box Building Assembly
PCB Fabrication Manufacturer, Prototype, Design and Assembly

How to Work with us – From File to Finished Board?

Step 1: Upload Your Files

Submit your Gerber, BOM, or PCB design files via our secure portal. We support various formats and guarantee file confidentiality.

Step 2: Engineering Review & Instant Quote

Our team performs a DFM check and confirms design compatibility. You’ll receive a quote and estimated lead time within 2 hours.

Step 3: PCB Fabrication & Parts Procurement

We begin board production and source parts simultaneously through authorized channels like Mouser, DigiKey, and Arrow.

Step 4: SMT/DIP Assembly & Testing

Boards are assembled in our SMT lines with 3D AOI, X-ray, and functional testing to ensure performance and soldering quality.

Step 5: Secure Packaging & Global Shipping

We pack your PCBs using anti-static materials and ship via DHL, FedEx, or your chosen method. Worldwide delivery in 3–5 days.

Custom PCB Board Quote

Not sure about all your PCB specs? No problem — we’re here to help.

Request a custom PCB board quotation if your project includes any of the following advanced requirements:

  • Controlled Impedance
  • Via Filling or Plugging
  • Blind or Buried Vias
  • Heavy Copper (≥ 2oz)
  • Controlled Dielectric Thickness
  • Edge Plating
  • CPK Requirements

Simply share what you do know — our engineering team will review your files and guide you through the rest.

FAQs

Q1: What file formats do you support?

Gerber (RS-274X), BOM (Excel), Centroid files, Pick & Place, Altium, Eagle, and PDF for reference.

Q2: Can I order just a few prototype boards?

Yes, our minimum order starts from 1 piece for PCB prototypes.

Q3: Do you provide components?

Yes! We offer full turnkey assembly, including sourcing components from trusted suppliers.

Q4: How do you ensure quality?

Every board is electrically tested (flying probe/fixture), and assembly passes AOI and functional testing before shipment.

Q5: Do you offer NDA for file protection?

Absolutely. We provide NDA upon request and all files are kept confidential.

You may also like

How to Remove Battery Corrosion from Electronics?
星期四, 10 4 月, 2025

Why Battery Corrosion Occurs?

Battery corrosion happens mostly with alkaline batteries. These batteries can leak potassium hydroxide. This chemical reacts with air, forming a white or bluish crust. That crust is the corrosion you see.

There are a few reasons why this happens. Old batteries left inside devices too long can leak. Extreme heat or cold can also make them expand and crack. Sometimes, poor-quality batteries just break down faster. Corrosion doesn’t mean the battery was faulty. But it does show that the battery has aged or faced rough conditions.

Some other causes include:

  • Overcharging or overheating: In devices that try to draw too much power, batteries can heat up and burst.
  • Poor storage conditions: Dampness or extreme cold can stress the battery casing.
  • Mixing old and new batteries: This creates uneven discharge, often stressing the older cell until it leaks.
How to Remove Battery Corrosion from Electronics?

Is Battery Corrosion Dangerous?

Yes, but only if you’re careless. Battery corrosion is not highly dangerous, but it can still be irritating if it gets on your skin or in your eyes. Potassium hydroxide is a skin irritant. It may cause mild burns, itching, or redness if touched directly. If accidentally ingested or inhaled, it can be more harmful—but that’s rare and usually avoidable.

In terms of your electronics, corrosion is more dangerous. The leaked compound can damage the metal connectors inside your device. If left untreated, it might eat away the contacts, cause shorts, or completely block the flow of power. That means your device might stop working even after the batteries are replaced.

However, with quick action, most devices can be restored to working condition. As long as you catch the corrosion early and clean it properly, there’s a good chance your device will recover fully.

How to Identify Corrosion on Batteries?

Battery corrosion usually appears as white, gray, or blue powder by visual. You’ll see it around the battery terminals or on the spring contacts. Sometimes, the battery might look bloated or cracked. But sometimes, we can’t identify whether it is corrosion from appearance, so how to identify it? Here we listing some other methods to recognize the battery corrosion:

1. Electrochemical test‌: By measuring the electrochemical parameters inside the battery, such as voltage, current and internal resistance, the degree of corrosion inside the battery can be indirectly inferred. ‌

2. X-ray or CT scan‌: This is a non-destructive detection method that can perform a full-scale scan and imaging of the inside of the battery without disassembling the battery, and can clearly see the corrosion inside the battery, including the location, degree and type of corrosion. ‌

3. Check the polarity of the battery‌: Observe whether the positive and negative poles of the battery are clearly visible and whether there are signs of corrosion or damage. If the positive and negative poles are corroded or damaged, the battery may be unusable. ‌ ‌

4. Measure voltage‌: Use a voltmeter to measure the battery voltage. Under normal circumstances, the voltage should be within a certain range (such as around 12V). If the voltage is lower than the normal value, it means that the battery is damaged.

5. Measure specific gravity‌: Determine the battery health by measuring the specific gravity of the battery electrolyte. The normal specific gravity is about 1.25-1.28g/cm³. If the specific gravity is lower than 1.2g/cm³, it means that the battery is damaged. ‌

6. Discharge test‌: Evaluate the actual capacity of the battery through the discharge test. Discharge the battery to the specified termination voltage, and then calculate the actual capacity of the battery based on the discharge time and capacity. ‌

How to Remove Battery Corrosion from Electronics?

What is the Best Solvent to Clean Battery Corrosion?

The most trusted solvents are white vinegar and lemon juice. They’re safe, gentle, and effective. These mild acids react with the potassium hydroxide and break it down. You don’t need harsh chemicals or expensive products.

Some people also use baking soda and water for acidic battery leaks, like those from lithium or rechargeable cells. But for most alkaline batteries, vinegar works better.

Avoid using alcohol or bleach. These don’t neutralize the leak and might damage plastics. Always test the solvent on a small area first.

How to Remove Battery Corrosion from PCBs?

Removing battery corrosion from PCBs takes a bit more care than cleaning corrosion from regular battery compartments, mainly because PCBs are more sensitive and often house fine components. Here’s a simple, professional, and safe way to clean corrosion from a PCB:

How to Remove Battery Corrosion from Electronics?

1. Power Down and Disconnect

First, completely power off the device. Disconnect all power sources, including batteries, power cords, and any external peripherals.

2. Wear Gloves and Safety Gear

Battery corrosion contains potassium hydroxide (alkaline batteries) or other chemical residues that can irritate skin or eyes. Use gloves, goggles, and work in a well-ventilated area.

3. Inspect the Corrosion Area

Look closely at the board under good lighting or even a magnifier. Corrosion usually appears as white or greenish deposits on the metal traces or battery terminals.

4. Neutralize the Corrosion

  • Use white vinegar or lemon juice to neutralize alkaline corrosion.
  • Apply it carefully with a cotton swab or soft brush directly on the affected area.
  • Let it sit for 3–5 minutes to break down the residue.

5. Scrub Gently

Use a soft-bristled toothbrush or anti-static brush to scrub the area. Be gentle—too much pressure can lift pads or traces from the PCB.

6. Rinse with Isopropyl Alcohol

After cleaning, rinse the area with 99% isopropyl alcohol to remove moisture and leftover acid. This step helps clean off the vinegar/lemon juice and dries quickly.

7. Dry Thoroughly

Pat the board dry with a lint-free cloth or allow it to air-dry. Use compressed air to blow out moisture under chips or between components.

8. Check for Damage

Look for broken traces, lifted pads, or corrosion under components. If corrosion went deep, you might need professional rework or replacement parts.

9. Reassemble and Test

Once you’re sure everything’s dry and clean, reassemble the board, add a fresh battery (if applicable), and power it up. In many cases, your board will work just fine again.

Can I Still Use Something If a Battery Corroded in It?

Often, yes. If the corrosion hasn’t spread too far, you can save the device. Most electronics are still fine once cleaned properly. The key is to act fast. The longer corrosion sits, the more damage it causes.

If contacts are lightly corroded, cleaning will fix it. But if they’re broken or rusted through, repair might be needed. Sometimes, replacing a contact spring is all it takes.

Check for signs of deeper damage like melted parts or burnt smell. If it looks too far gone, it may be time for a replacement. But don’t give up too quickly. Many items bounce back with just a simple cleanup.

How to Prevent Battery from Corrosion?

Good habits make all the difference. Here are a few tips to keep your devices corrosion-free:

  • Remove batteries when not in use. If you’re storing something for months, take them out.
  • Store devices in a cool, dry place. Avoid hot cars or damp basements.
  • Use high-quality batteries. Cheap ones often leak sooner.
  • Check expiration dates. Old batteries are more likely to corrode.
  • Inspect devices regularly. A quick glance now can save repairs later.
  • Avoid mixing old and new batteries. This creates imbalance and increases leakage risk.
  • You can also use a small dab of dielectric grease on contacts. This helps prevent moisture from reaching the metal.

Battery corrosion is a common issue, but it’s not the end of your device. With the right handling and preventive measures, you can extend the life of your electronics and avoid long-term damage. At Best Technology, we take battery care and component storage seriously. All components are stored at controlled temperatures to reduce chemical reactions that lead to corrosion.

To add another layer of protection, we pack our products using ESD bags, which not only prevent electrostatic discharge but also act as a barrier against moisture and airborne contaminants—two major triggers of battery and PCB corrosion.

We understand how important reliability is in electronics manufacturing. That’s why our quality control process includes moisture-sensitive labeling (MSL), humidity indicator cards, and dry-pack sealing for sensitive parts. If you’re looking for a PCB & PCBA supplier that takes every detail seriously, from component protection to customer satisfaction, Best Technology is here to support your goals with the expertise and care your products deserve.

You may also like

What is Black Pad PCB? How to Solve it and Precautions
星期四, 10 4 月, 2025

What is a Black Pad in PCB?

A black pad in a PCB refers to a defect that occurs during the ENIG (Electroless Nickel Immersion Gold) surface finishing process. In the surface treatment process of ENIG, the radius of nickel atoms is smaller than that of gold atoms, so when gold atoms are arranged and deposited on the nickel layer, the surface grains will show a rough, loose and porous morphology, forming many voids. These gaps allow the bath to continue to react with the nickel atoms, causing them to oxidize. The undissolved nickel ions are trapped beneath the gold layer, forming nickel oxide, the so-called black pad.

When the black pad occurs, this area becomes brittle and doesn’t bond well during soldering. As a result, the connection between the component and the pad becomes unreliable.

Although it’s a well-known issue in the industry, many designers and engineers still face it during production. It’s not always visible during inspection, which makes it tricky. Once it affects the final board, the reliability drops—especially in fine-pitch components or BGA (Ball Grid Array) assemblies.

What is Black Pad PCB? How to Solve it and Precautions

Black Pad Photos

A black pad appears as:

  • Dark, muddy, or stained areas on the pad.
  • Inconsistent finishes between pads.
  • Rough texture or pits on the nickel layer.
  • Exposed pads that don’t bond during reflow.

You can see the typical photos of black pad as following:

Engineers often spot it only after a failed solder joint. Sometimes, they notice it under a microscope after an assembly defect shows up. When looking at underfilled solder joints or cracks, a black pad might be the hidden culprit.

What Causes Black Pad Defects in ENIG Surface Finishes?

The main reason for the formation of black pads is that the nickel layer is eroded by excessive oxidation during ENIG surface treatment. There are two main steps in this process: a layer of nickel is deposited and a thin layer of gold is applied, as you can see in the ENIG structure diagram below.

What is Black Pad PCB? How to Solve it and Precautions

Black pads caused by several factors, even when manufacturers strictly control chemical content, temperature, and raw materials, black pads sometimes occur. Here are some factors that Best Team faced during the PCB manufacturing:

1. High phosphorus content

Chemical nickel contains phosphorus. When the phosphorus content is too high, it diffuses into the nickel and causes nickel oxidation. A barrier is formed between gold and nickel during this process. It may cause reliable solder joints to delaminate and crack, resulting in electrical shorts in the PCB.

2. Corrosion during ENIG process

Gold plating is a necessary process for ENIG surface treatment commonly used in PCB manufacturing processes. If it is not operated properly, it will also lead to the formation of black pads. One of the reasons for the formation of black pads during gold deposition is the use of an aggressive gold bath. This nickel bath process causes rapid corrosion of nickel, resulting in black pads.

3. High gold content

High gold content can also lead to the formation of black pads. Excessive gold in the surface treatment of the nickel substrate can cause excessive galvanic corrosion and eventually form black pads.

4. Brittle fracture

Brittle fracture is a type of failure that occurs when a material is under high stress, but does not have the flexibility to withstand stress, and breaks suddenly without warning. This failure usually manifests as a black pad on the PCB surface. In addition, thermal stress, vibration, and shock can also cause brittle fracture. When this happens, it creates a crack structure within the nickel, causing an electrical short circuit.

In short, black pad is not a material defect—it’s a process problem. When ENIG isn’t done right, corrosion finds a way in.

How Can You Identify Black Pad on a PCB?

Spotting a black pad on a finished board is tough. It often hides beneath the surface and becomes visible only after soldering problems appear. But there are a few ways to detect it:

1. Visual Inspection

    Do not inspect by your naked-eyes. Use a high-powered microscope to examine the pads instead. Look for dark spots, uneven textures, or dull finishes. These are the first signs.

    2. X-Ray or Cross-Section

    If you suspect the issue but can’t see it, advanced tools help. Cross-sectioning shows the damaged layers. X-ray inspection shows failed joints under BGAs and other tight packages.

    3. Solder Joint Analysis

    A cracked or non-wetting joint may indicate a black pad. If the solder ball peels off cleanly from the pad, you’re likely dealing with a surface that didn’t bond properly.

    What is Black Pad PCB? How to Solve it and Precautions

    4. Pull or Shear Testing

    This test measures joint strength. A weak joint may lead to a deeper look. If the break happens at the interface of the pad and solder, that’s a clue.

    Although identification is possible, it’s much better to prevent the issue altogether. Because once it’s on the board, the damage is already done.

    Why is Black Pad Considered a Serious Reliability Issue in PCBs?

    Solder joints are the heart of any PCB. Every connection must be secure to handle temperature, vibration, and time. Black pad disrupts that by creating a brittle layer that doesn’t bond well with solder. And if black pads exist, here’s what defectives will happens:

    • The solder joint may crack.
    • Components may detach during vibration.
    • Connections may fail over time due to thermal cycles.
    • Weak pads may pass initial tests but fail later.

    Even worse, most black pad defects don’t show up during inspection or basic testing. This delayed failure causes headaches in the field, leading to product returns, customer complaints, and loss of trust. That’s why manufacturers treat black pad as a critical issue. It’s not just cosmetic—it threatens the performance of the entire product.

    How Does Nickel Corrosion Contribute to Black Pad in PCBs?

    During the ENIG process, nickel is deposited first, followed by gold. The gold solution is slightly acidic. If the bath is too aggressive or the exposure is too long, it attacks the nickel. This chemical attack causes “spiky” corrosion. Think of it as tiny pits or cracks in the nickel. These spots are where the solder refuses to bond. Also, when the nickel has too much phosphorous, it becomes glassy and fragile. Under heat, the layer cracks more easily. This leads to more exposed areas and faster failure.

    In short, nickel should form a smooth, strong base. But corrosion weakens it and opens the door to the black pad defect. The more pits and cracks it has, the worse the joint becomes.

    How to Prevent Black Pads? – For Manufacturers

    1‌. Improving ENIG process‌: By adjusting the formula of the gold plating solution and optimizing the parameter settings during the electroplating process, the erosion of the nickel layer can be effectively reduced‌.

    ‌2. Strengthening quality inspection‌: Strengthen quality control on the production line and conduct regular inspections to detect and correct the black pad phenomenon as early as possible‌.

    ‌3. Controlling the thickness of the gold layer‌: The thickness of the gold layer should not exceed 5 microns, and it is best to control it at around 3.2 to 3.6 microns to reduce excessive corrosion of the nickel layer‌.

    ‌4. Managing the temperature and concentration of the gold plating solution‌: Control the temperature and concentration of the gold water to avoid excessive temperature and too little gold to reduce excessive corrosion of the nickel layer and incomplete coverage of the gold layer‌.

    5. Cleaning surface: After gold plating, high-temperature water flushing, pure water hot washing, ultrasonic or air blowing and other cleaning treatments are carried out to ensure the cleanliness of the welding surface.

    How to Prevent Black Pads? – For Designers

    1. Selecting alternative materials‌: For applications that require particularly high reliability, other types of surface treatment materials, such as silver or tin, can be considered, which may provide better performance‌.

    2. Design considerations‌: Considering how to enhance the stability of the solder joints during the design stage, such as appropriately adjusting the position of the pads or increasing the number of solder joints, can help improve the overall reliability of the circuit board‌.

    FAQs about Black Pads

    1. Can black pad be repaired?

    Unfortunately, no. Once a pad is affected, it must be scrapped. Rework doesn’t help because the damage lies beneath the surface.

    2. Does black pad only affect by ENIG finishes?

    Yes, it’s specific to ENIG. Other finishes like HASL, OSP, or ENEPIG don’t show this defect.

    3. Is it common in high-volume production?

    It depends on the manufacturer, looking for a reliable PCB manufacturer like Best Technology can reduce the black pad risks. With proper controls, it’s rare.

    4. Does black pad affect all components equally?

    Not always. Fine-pitch and BGA parts are more sensitive because they have small solder areas. Larger components may be less affected but still at risk.

    You may also like

    How to Design PCB Gold Fingers? PCB Gold Finger Plating Process
    星期三, 9 4 月, 2025

    What Is a Gold Finger in PCB?

    PCB gold finger is a row of gold-plated conductive contact sheets located on the edge of the printed circuit board, named for its shape like a finger and plated with gold. It is usually used to insert the PCB into a connector or card slot for electrical connection and signal transmission. You’ll often find them on expansion cards, memory modules, and interface boards that plug into the motherboard or backplane.

    These fingers act as the physical and electrical contact points between the PCB and its slot. They need to be durable, conductive and corrosion-resistant, which is why gold is used. Unlike standard wires or padding, gold fingers must withstand repeated insertion and removal, so wear resistance and high reliability are top priority in their design.

    How to Design PCB Gold Fingers? PCB Gold Finger Plating Process

    What Material is Gold Fingers Made of?

    Gold fingers aren’t pure gold, and they don’t need to be. Instead, they are a multi-layer structure designed for performance, not cost.

    At the core is copper, the base layer used in nearly all PCBs. Copper offers excellent electrical conductivity. But copper oxidizes over time, which affects signal transmission. So, a nickel barrier is added next. Nickel prevents the copper from diffusing into the top gold layer and adds hardness.

    Finally, a thin layer of gold—either hard electroplated gold or soft immersion gold—is applied on top. Gold is chosen for two key reasons: it’s a great conductor and it doesn’t tarnish or corrode. This ensures long-lasting, high-performance edge connectors.

    The amount and type of gold used depend on the application. Some fingers will have a thicker, harder gold layer for high-wear use. Others, used less often, may use thinner or softer gold to save on cost.

    Types of PCB Gold Fingers

    1. Standard PCB Gold Fingers – The most common PCB gold fingers, with horizontal and even arrays. PCB pads have the same length, width and space. This type of gold finger is easy to make.

    How to Design PCB Gold Fingers? PCB Gold Finger Plating Process

    2. Uneven PCB Gold Fingers – PCB pads have the same width but different lengths and sometimes different spaces like below image showing. For some PCBs, the gold fingers are designed to be shorter than others. The most relevant example of such PCBs is a PCB for a memory card reader, where the device connected to the long finger must first power the device connected to the shorter finger.

    How to Design PCB Gold Fingers? PCB Gold Finger Plating Process

    3. Segmented PCB Gold Fingers – PCB pads have different lengths, and the gold fingers are segmented. Segmented gold fingers vary in length, and some of them are also disjointed within the same finger of the same PCB. Such PCBs are suitable for waterproof and rugged electronics.

    How to Design PCB Gold Fingers? PCB Gold Finger Plating Process

    PCB Gold Fingers Manufacture Technical

    Not all gold fingers are made using the same process. The method and material used for gold plating affect the performance, durability, and cost of the final product. Let’s take a closer look at the most common types.

    Electroless Nickel Immersion Gold (ENIG)

    ENIG is a chemical process used to deposit a thin, even layer of gold over a nickel base. It’s not applied using electricity, so it creates a smooth, flat surface. ENIG is known for its excellent surface planarity and is commonly used for surface mount pads. But in gold fingers, it’s less common unless the board will be inserted only a few times. ENIG produces softer gold, which means the plating wears off faster with repeated use.

    Electroplated Hard Gold

    This is the most popular choice for gold fingers PCB applications. Electroplating uses an electric current to apply a thicker and harder layer of gold, its gold thickness can be up to 50u’’. Hard gold plating usually includes small amounts of cobalt or nickel, which makes the gold layer more rigid. This helps it resist abrasion during multiple insertions into card-edge connectors.

    Electroplated hard gold is a bit more expensive than ENIG but lasts longer and offers better performance for edge connectors.

    Edge Beveling

    Edge beveling isn’t a type of plating but an additional mechanical step. It involves cutting or grinding the PCB edge at an angle, typically 30° or 45°, to make insertion into connectors smoother.

    Beveled edges help prevent damage to both the PCB and the mating socket. It also reduces insertion force, minimizing wear and tear. While beveling isn’t mandatory, it’s often recommended when the board will be inserted and removed multiple times.

    Gold Fingers vs. Edge Connectors

    “Gold fingers” and “edge connectors” are both terms used in PCB design, but they refer to slightly different concepts. Gold fingers are part of the PCB, while edge connectors are part of the device that receives the PCB. Gold fingers are the gold-plated pads at the board’s edge. They’re designed to slide into the slot of an edge connector. The connector itself is usually mounted on a motherboard or backplane, holding the PCB in place and ensuring a stable electrical link.

    FeatureGold FingersEdge Connectors
    DefinitionGold-plated contact pads on the edge of a PCBSocket or slot that receives the PCB
    LocationPart of the PCB itselfMounted on a motherboard or host board
    FunctionTransmit signals and power from PCB to systemProvide physical and electrical connection
    MaterialCopper + nickel + gold platingUsually plastic body with internal metal contacts
    DurabilityDepends on gold thickness and use frequencyBuilt to withstand repeated insertions/removals
    Customization  Length, width, plating, beveling can be customizedUsually standard depending on slot type
    Common UseRAM sticks, GPU boards, industrial control boardsMotherboards, expansion slots, backplanes
    Design ConsiderationNeeds precise layout, spacing, and gold platingMust match PCB layout and dimensions

    Benefits of Designing Gold Fingers at the Edge of PCB

    1. Gold fingers allow boards to be plugged directly into other systems without the need for extra connectors, makes design simpler and install faster.
    2. Gold is highly conductive, so the signals and power of devices enable to pass efficiently through the interface. They are often used in high-frequency or high-speed data applications.
    3. Gold does not oxidize or corrode. Even in moist or harsh environments, it maintains its performance over time.
    4. Hard gold plating can handle thousands of insertions without degrading. That’s why it’s ideal for modular designs or devices that get frequently unplugged.
    5. Gold fingers reduce the need for bulky connectors, allowing for more compact PCB designs—especially valuable in smartphones, wearables, and compact industrial modules.

    How Thick Is a PCB Gold Finger?

    The gold thickness on fingers typically ranges from 3 to 50u’’, depending on how the PCB will be used. For commercial and industrial use, the standard is usually 30u’’ of hard gold over 100–150u’’ of nickel.

    • 3–10u’’: Suitable for low-cost applications with minimal wear.
    • 15–30u’’: Common for most consumer electronics and industrial devices.
    • 45–50u’’: Used in military or high-end industrial equipment that needs maximum durability.

    PCB Gold Finger Plating Process

    The hard gold plating process for PCB gold fingers involves several precise and carefully controlled steps. Here’s how it’s done:

    1) Apply Blue Protective Mask

    All areas of the PCB surface except the gold finger pads are covered with a blue protective mask. This ensures that only the contact pads receive hard gold plating. The conductive areas are aligned consistently with the board’s orientation to maintain plating accuracy.

    2) Remove Oxide Layer from Copper Pads

    Next, the oxidation layer on the copper surface of the gold finger pads is removed. We use sulfuric acid for this step, followed by a water rinse. Then, the surface is mechanically scrubbed to ensure it’s fully clean. After that, we rinse the surface again using water and deionized water to eliminate any residues.

    3) Electroplate Nickel onto Copper Pads

    A nickel layer is then electroplated onto the clean copper surface of the gold finger pads. This layer serves as a barrier and bonding surface for the gold. After plating, the surface is thoroughly rinsed again with water and deionized water to remove any remaining nickel solution.

    4) Electroplate Hard Gold over Nickel

    Now comes the hard gold plating step. A layer of gold is electroplated onto the nickel-coated pads. This provides durability, conductivity, and wear resistance. Any unused gold solution is recovered for reuse. Finally, the plated area is cleaned again—first with water, then with deionized water—to ensure a spotless surface.

    5) Remove Blue Mask

    With the hard gold plating complete, the blue protective mask is removed. The PCB is then ready to move forward in the manufacturing process, beginning with the solder mask printing step.

    Design for Manufacturability (DFM) of PCB Gold Fingers

    1. Beveling Design for Gold Fingers

    • The safe distance between the gold fingers and the PCB outline edge must be considered. This depends on the final board thickness and the bevel angle. Common bevel angles are 45o.
    • If the gold fingers are too close to the board edge, copper may be exposed during beveling. To avoid this, copper should be trimmed based on specific parameters as below. However, if you do not want to shorten the gold fingers, increase the safety distance between them and the board edge as per the recommended values.
    Bevel AngleBoard Thickness (mm)Remaining Thickness (mm)Beveling Depth (mm)
      20o1.60.51.51
    3.00.651.85
    2.50.72.47
        30o1.00.50.44
    1.20.50.60
    1.60.50.95
    2.00.651.16
    2.50.71.56
        45o1.00.50.25
    1.20.50.35
    1.60.50.55
    2.00.650.68
    2.50.70.9

    2. Solder Mask Opening Design

    • To ensure easy insertion into connectors, no solder mask should be applied over the gold finger area. Full openings must be designed here. If the area is not fully opened, solder mask ink between gold fingers can peel off after repeated insertion/removal, which may affect contact reliability.
    • Gold finger and tin finger areas must have solder mask openings that extend approximately 10 mil beyond the board edge.
    • The solder mask opening should be 4 mil larger than the trace on each side. Make sure that the distance between the opening and surrounding copper is safe to prevent exposed copper. If copper is exposed, it must be removed (etched).
    • No solder mask opening is allowed for vias within 2 mm of the gold finger area.

    3. Copper Pour Design on the Signal Layer

    To support smoother insertion, avoid copper pour (flooding) in the gold finger region on the outer layers. If multiple fingers share the same net and copper is poured, they might be joined into a single pad, which affects mechanical separation and may interfere with insertion/removal.

    How to Design PCB Gold Fingers? PCB Gold Finger Plating Process

    4. Uneven Gold Fingers

    • For uneven gold fingers, the main trace should be 40mils, and the auxiliary trace should be 20mils. The connecting point should be 6mils, and the distance between the pad and the 20mil auxiliary trace should be 8mils. After adding the staggered traces, the main trace should be shifted to maintain an 8mil spacing from the long finger pad.
    • When the main trace enters the board, it should be connected using a diagonal line. If there’s a large groove beside the finger, the trace should be curved, not angled.

    How Are PCB Gold Fingers Used?

    Gold fingers are found in a wide variety of applications across many industries:

    • Computers: RAM modules, GPUs, and expansion cards all use gold fingers to connect to the motherboard.
    • Consumer Electronics: Devices like game consoles, smart TVs, and wearables use gold fingers for modular connections.
    • Medical Devices: Equipment requiring high reliability often includes gold fingers for secure signal transfer.
    • Industrial Automation: Boards that plug into PLCs or backplanes use gold fingers to keep connections stable in harsh environments.
    • Aerospace and Defense: Mission-critical systems rely on hard gold fingers for consistent performance and durability.

    FAQs

    1. What’s the Ideal Thickness for PCB Gold Fingers?

      Most designs use 30μin of hard gold.

      2. Are Gold Fingers Always Beveled?

      Not always, but beveling helps reduce insertion wear. It’s recommended if the board is plugged in and out often.

      3. How Do I Know If I Need ENIG or Hard Gold?

      Use ENIG for light-use connectors or where solderability matters. Go for hard gold when durability and frequent insertions are key.

      4. How Much Does PCB Gold Fingers Cost?

      PCB gold fingers cost depends on gold thickness, finger length, and quantity. Thicker gold and more fingers increase cost, but also improve lifespan. Contact Best Technology to get a quotation.

      5. Can Gold Fingers Be Repaired?

      Usually, no. Once worn or damaged, the board often needs to be replaced.

      You may also like

      Free Design for Manufacturing DFM Support, DFM vs. DFMA
      星期三, 9 4 月, 2025

      What is Design for Manufacturing (DFM)?

      Design for manufacturing, or DFM, is the process of designing products with ease of manufacturing in mind. It focuses on making products that are not only functional but also simple to build. When DFM is done well, it helps reduce production costs, shortens the time to market, and improves quality.

      At its core, DFM is about creating designs that match the capabilities of the manufacturing process. Engineers and designers can work together with manufacturers early in the process. So that engineer can identify potential problems before mass production or prototype, save much time for customers.

      Free Design for Manufacturing DFM Support, DFM vs. DFMA

      3 Goals of DFM

      1. Cost Reduction

      By optimizing the design, you can reduce waste, material usage, and labor. Simple shapes, fewer parts, and efficient processes lead to lower costs.

      2. Faster Production

      Well-designed parts are easier to manufacture. This leads to shorter cycle times and quicker delivery. Less rework and fewer changes speed things up too.

      3. Improved Product Quality

      DFM encourages consistency. It minimizes variation and errors during production. As a result, you get a higher-quality end product that performs reliably.

      Perform DFM before manufacturing can detect potential defectives that we can’t detect, it covers three aspects, including:

      Free Design for Manufacturing DFM Support, DFM vs. DFMA

      What are the 5 Principles of Design for Manufacturability?

      1. Reduce the number of parts/components

        By simplifying the design, reducing the number of parts can reduce manufacturing costs and complexity and improve production efficiency. For example, combining multiple parts into one not only reduces the chance of errors, but also saves assembly time and development time.

        2. Standardized design

        The use of standardized components and design elements helps to reduce production variability and improve product consistency. Standardized design can reduce design time, improve assembly efficiency, and reduce research and development costs.

        3. Simplify the assembly process

        Considering the convenience of assembly during design can reduce assembly time and cost. Through modular design, the same set of parts can be used alternately, reducing the dependence on specific molds, thereby reducing production costs.

        4. Material selection

        Select the appropriate material to ensure the manufacturability and performance of the product. Reasonable material selection can not only improve product reliability, but also reduce manufacturing costs.

        5. Manufacturing tolerances

        Reasonably set manufacturing tolerances to balance manufacturing costs and product quality. Proper tolerance setting can ensure product quality and reduce production costs at the same time.

        What is the Difference Between DFM and DFMA?

        It’s easy to mix up DFM and DFMA. They’re closely related but serve slightly different purposes.

        DFM (Design for Manufacturing) focuses on manufacturing, refers to the design for manufacturing, mainly focuses on how to simplify the parts processing process through design, reduce the difficulty and cost of manufacturing. Its core goal is to optimize designs and make them easier to manufacture while improving product quality. DFM‌ focuses on parts processing, reducing manufacturing difficulties through design optimization, such as reducing complex processes and avoiding strict tolerances.

        DFMA (Design for Manufacture and Assembly) combines the principles of DFM and DFA (Design for Assembly) to optimize the manufacturing and assembly process of products to reduce costs, increase efficiency and improve product quality. DFMA‌ not only focuses on manufacturing, but also on assembly, emphasizing the comprehensive consideration of manufacturing and assembly optimization in the design stage, such as reducing the number of parts, simplifying the assembly process, etc.

        In short:

        DFM = Can we make this part easily?

        DFMA = Can we make and assemble this product easily?

        Common Defective Issues Detected by DFM

        Common Defective Issues Detected by DFM

        How to Perform Design for Manufacturing DFM?

        Performing DFM is not a one-step process. It’s a mindset that should be part of every stage of product development.

        1. Engage Early with Manufacturers

        Bring in manufacturing experts during the design phase. Their insights help prevent rework and delays later.

        2. Evaluate the Design for Each Process

        Check if the design works well with cutting, forming, molding, or other methods. Each process has its strengths and limits.

        3. Reduce Part Counts

        Combine parts where possible. Fewer parts mean fewer connections, less inventory, and easier builds.

        4. Analyze Tolerances

        Use realistic tolerances. Too-tight specs increase cost and difficulty. Focus on where precision is truly needed.

        5. Review Materials and Finishes

        Pick materials that are easy to source and suitable for the environment. Avoid special coatings unless they’re vital.

        6. Prototype and Test

        Use early builds to check for problems. Make improvements based on real data, not just models. DFM is about iteration. Keep refining until the design fits both function and production.

        What Should You Consider When Designing for Manufacture?

        When designing for manufacturing, many small details matter. These are the key areas to watch:

        • Avoid complexity design. Keep PCB simple and easy to shape.
        • Design parts that work well with available tools. Custom fixtures can slow things down.
        • Think about how the part will be handled. Can it be picked up, rotated, and fixed easily?
        • Check how tolerances from one part affect the whole system. Misalignment can come from small errors that add up.
        • Use materials that match the product’s goals—strength, weight, heat resistance—but also consider cost and ease of use.
        • Don’t ask for polished surfaces unless needed. Extra finishing steps raise cost and time.
        • Are the parts easy to source? If not, you may face delays or searching for alternative parts.
        • High-volume parts benefit from different methods than low-volume ones. Tailor your design to the production level.

        Get Free DFM Support with Best Technology

        At Best Technology, we support your design goals from the first sketch to the final board. We offer one-on-one support, PCB fast prototyping, and clear communication every step of the way. After getting your design files, we will perform design for manufacturing analysis, and send the report to you to optimize the design. Our service including:

        1. PCB manufacture

        FR-4 PCB, High TG FR-4 PCB, Heavy copper PCB, Impedance control PCB, High frequency PCB, Flexible PCB, Rigid-flex PCB, HDI PCB, Aluminum PCB, Copper based PCB, Ceramic based PCB, high speed PCB, IC substrate

        2. PCB assembly

        SMT, DIP, reflow soldering, Wave soldering, Hand soldering, Mixed assembly, wire harness assembly, PCBA testing, box building assembly

        3. Components sourcing

        Firsthand components, original manufacturers, BOM checking, components sourcing, IQC checking, ISO9001 certificated

        4. PCBA design and duplication

        Hardware engineers, Software engineers, Schematic design, PCB layout, Software development, PCBA duplication

        Whether you need help choosing the right PCB & PCBA manufacturer or searching for a cost-effective solution, we’re here. In our next article, we will share acknowledges about design for assembly (DFA), if you are interested about it, please collect our website or leave your message at comments.

        You may also like

        How Do You Discharge a Capacitor with a Multimeter?
        星期二, 8 4 月, 2025

        How do you discharge a capacitor with a multimeter? You don’t directly use a multimeter to discharge capacitor. But it helps you check if the capacitor is safe after discharging. Always use the right method—resistor, discharge tool, or careful shorting—for the actual discharge step. Then, use your meter to confirm.

        At Best Technology, we’re not just about making PCBs—we help make your job safer and easier. We’ve spent over 18 years building boards that last. From simple single-sided layouts to complex multilayer boards with embedded capacitors, we’ve seen it all. In today’s guide, we’ll walk you through how to discharge a capacitor using a multimeter. We’ll also share tips on safely discharging AC capacitors, how to handle them on circuit boards, and the proper use of a capacitor discharge tool. If you’re looking for a simple and safe method, you’re in the right place.

        How Do You Discharge a Capacitor with a Multimeter?

        What is a Capacitor in a Circuit Board?

        First of all, let’s know the definition of capacitor. A capacitor in a circuit board is like a small energy storage tank. It’s used to store electrical energy and release it when needed. On a circuit board, engineers use capacitors to stabilize voltage, reduce electrical noise, and smooth power supply fluctuations. For example, in audio systems, capacitors help remove unwanted signals so sound remains clean. In computers, they keep memory stable when power dips. Whether in large industrial machines or small wearable gadgets, capacitors play a quiet but essential role in reliable performance.

        A capacitor stores extra electrical energy and delivers it when there’s a drop or loss in power. This backup helps devices run smoothly. But before working with any capacitor—especially when installing it in a new device—discharging it is a must for your safety.

        Why Discharging a Capacitor Matters?

        Capacitors can hold a charge long after power is turned off. This stored energy may not seem dangerous, but it can cause shocks, damage tools, or even ruin components. Therefore, discharging a capacitor is important because it removes any leftover electrical charge. Even when a device is turned off, the capacitor can still hold a charge. This charge can be strong enough to cause a shock or damage nearby parts. Let’s say you’re replacing a power supply board—if the capacitor isn’t discharged, you could get a sharp zap or even fry the replacement parts. Discharging keeps you, your tools, and your components safe.

        What Happens If You Don’t Discharge a Capacitor?

        If a capacitor stays charged, it can deliver a quick jolt. This can hurt. It might even surprise you enough to drop your tools. In some cases, it may spark or cause short circuits. Worse, it could damage sensitive components nearby. Ignoring this step puts your safety and your equipment at risk. It’s a small step that makes a big difference.

        How to Check an AC Capacitor with a Multimeter?

        Start by turning off the power. Wait for the system to cool if needed. Then, discharge the capacitor using a safe method (we’ll cover that soon). Once that’s done, set your multimeter to the capacitance setting. It usually looks like two parallel lines.

        Next, remove the wires from the capacitor terminals. Connect your meter leads to each terminal. The reading should match the label on the capacitor. If it shows a much lower value or nothing at all, the part might be bad.

        If your meter doesn’t have a capacitance setting, you can still check it. Set it to resistance (ohms). A good capacitor will show a quick jump in numbers, then settle back down. A bad one may read open (no change) or shorted (zero).

        How Do You Discharge a Capacitor with a Multimeter?

        How Do You Safely Discharge a Capacitor?

        There are three common ways to discharge capacitor.

        1. Use a Resistor

        This is one of the safest methods. Get a resistor between 5k to 20k ohms and rated at 5 watts or more. Hold the resistor leads with insulated clips or pliers. Touch one lead to the positive terminal, and the other to the negative. Hold it for a few seconds. The stored energy will bleed off slowly. This way is easy and safe for DIY projects.

        2. Use a Capacitor Discharge Tool

        A capacitor discharge tool is a safer version of the resistor method. It’s built with proper insulation, clips, and a discharge resistor inside. Some versions even have an LED indicator to show when the voltage is gone. If you work with capacitors often, this tool is worth having. It’s faster and safer than makeshift methods. Its schematic shows as below:

        How Do You Discharge a Capacitor with a Multimeter?

        When the switch S1 is on and S2 is off, the capacitor is charged.
        When S1 is off and S2 is on, the capacitor discharges to the LED.

        3. Use a Screwdriver (Only for Low-Voltage Circuits)

        Only use this method on capacitors below 50V. Use a screwdriver with an insulated handle. Touch both terminals at the same time. You might see a small spark. Wait a few seconds, then check again. It’s simple but risky—avoid using it on high-voltage parts.

        What Is the Process of Discharging a Capacitor with a Multimeter?

        First, check if your multimeter has a built-in discharge function. Most don’t. But some digital models made for electronics might.

        If not, you’ll need to discharge the capacitor before using the multimeter. Here’s how:

        1. Turn off and unplug the device.
        2. Use a capacitor discharge tool or resistor as explained above.
        3. After discharging, use the multimeter to check the voltage across the terminals.
        4. Set the meter to DC volts if it’s an electrolytic capacitor.
        5. If the reading is near zero, it’s safe to handle or test further.
        How Do You Discharge a Capacitor with a Multimeter?

        Multimeters are not designed to remove charge. Their job is to measure. Forcing a multimeter to discharge can damage it. Always use the right tool for the job.

        How Long Does It Take to Discharge a Capacitor?

        The time varies depending on the capacitor’s size and the method used. Small capacitors may discharge in under a second. Larger ones can take several seconds or more. Using a proper resistor makes it slower but safer. A fast discharge can cause sparks or damage.

        For example, using a 10k ohm resistor on a 470uF capacitor may take around 5–10 seconds. If you’re using a capacitor discharge tool with a visual indicator, you’ll know when it’s done. Always wait a bit longer than you think you need. Safety first.

        What Happens After a Capacitor Is Discharged?

        Once a capacitor is fully discharged, the voltage across its terminals drops to zero or close to it. That means it’s safe to touch or work on. You can test it, replace it, or solder it without the risk of shock.

        Discharging doesn’t harm the capacitor. It only removes stored energy. In fact, this step protects both the capacitor and everything around it. It’s just like emptying a water bottle before cleaning it—simple, safe, and smart.

        How to Check if a Capacitor Is Discharged?

        The best way is to use a multimeter. Set it to DC voltage. Touch the leads to each terminal. Check the radings. If the reading is under 1 volt, the capacitor is discharged. If it shows higher, wait or try discharging again.

        How Do You Discharge a Capacitor with a Multimeter?

        Some people also use a discharge tool with an LED. When the light goes off, it means the charge is gone. This is quick and useful, especially in tight spaces or when working with multiple parts.

        Another trick is to short the terminals with a resistor and listen. If you hear a faint pop or see a spark, it was still charged. If nothing happens, it’s likely safe.

        Do I Need to Discharge a New Capacitor Before Installing?

        Most new capacitors come with no charge. They haven’t been connected to power, so they’re usually safe. But if the part has been tested, returned, or used before, it might still hold a small charge.

        To be safe, check it with your multimeter. If there’s any voltage, discharge it. It takes only a few seconds and adds an extra layer of safety.

        Even in a factory, charged capacitors can slip through if they were tested. So, it’s good practice to check every time, even if the part is new. Better to be safe than sorry.

        Final Thoughts

        If you’re regularly dealing with circuit boards or electronic repairs, investing in a capacitor discharge tool and a reliable multimeter can make your job easier and safer. Plus, learning how to measure capacitance can help spot failing parts before they cause bigger problems.

        Need help sourcing safe, high-quality components? Our team at Best Technology offers expert solutions for all types of PCBs, including ones with advanced capacitor layouts. With over 18 years in the industry, we know how to match the right part to your design. From testing tips to full production runs, we’ve got you covered.

        Whether you need help with one board or thousands, we’re ready. Partner with us for quality that lasts. With Best Technology, your circuit is in good hands. Get reach with us for more information about PCB repair or PCB manufacturing!

        You may also like

        What is Battery Eliminator Circuit? How Does it Works?
        星期六, 5 4 月, 2025

        What Is a Battery Eliminator Circuit?

        A battery eliminator circuit can be short for BEC, it is a circuit that replaces batteries to provide power. Battery eliminator circuits were originally used in applications where the mains was converted to battery power. They are now used in battery-driven applications where high and low power are required, and can be used to save battery demand. For example, when the motor requires 12V and the control board requires 5V, a 12V to 5V battery eliminator circuit is required, and only one set of 12V batteries is required.

        Early commercial battery eliminators were produced by Edward Rogers in 1925 as a supplement to his line of “battery-free” radio receivers. Another early battery eliminator manufacturer was Galvin Manufacturing Company (later known as Motorola), which was founded on September 25, 1928 by Paul Galvin and his brother Joseph E. Galvin to build battery eliminators for radio receivers installed in cars.

        BECs are also used in some motorcycles and all-terrain vehicles to reduce the use of batteries in order to reduce the weight of the load. The part that originally required the battery is replaced by a large-capacity capacitor, which can be used to reduce the pulse fluctuations produced by the alternator.

        What is Battery Eliminator Circuit? How Does it Works?

        Why Is a Battery Eliminator Circuit Important?

        Many electronic circuits require different voltage levels to function correctly. For example, in an RC aircraft or drone, the motor runs on a high-voltage battery pack, but the flight controller, servos, and receiver need a much lower voltage (usually 5V or 6V). Without a BEC, a separate battery would be required for the receiver and servos, adding extra weight and complexity. A BEC solves this issue by stepping down the voltage and supplying consistent power to these essential components.

        In addition to this, intercell static electricity is a common phenomenon in electronics, which can produce a transient high voltage in electronic devices, resulting in damage to batteries and devices. And the static electricity between batteries may cause problems such as short circuit, leakage, and overheating of batteries, or even fire and explosion. The battery eliminator circuit connects the electrostatic charge between the battery and the ground through the grounding principle, so that the charge is lost, so as to protect the safety of the battery and equipment.

        Types of Battery Eliminator Circuits

        There are two main types of BECs in the electronics, each with distinct advantages and applications:

        1. Linear BEC

          A linear battery eliminator circuit uses a linear voltage regulator to reduce voltage. It is commonly used in remote-controlled (RC) models, especially as part of an electronic speed controller (ESC). This circuit allows the RC model to operate with a single battery pack that powers both the motor and control electronics, eliminating the need for a separate battery for the receiver and servos.

          A BEC within the linear regulator often includes a low-voltage cutoff function to prevent excessive battery discharge, which could lead to system failure. It is typically installed according to the manufacturer’s recommendations, and the regulated voltage is optimized for the RC receiver.

          2. Series BEC (SBEC)

          A series battery eliminator circuit is a design that uses a basic series switching regulator to provide a stable DC voltage output. It is commonly used in 9V DC applications, with a maximum current not exceeding 100mA. This circuit includes components such as a transformer, filter capacitor, and push-pull rectifier, which help step down the voltage and provide isolation protection.

          When unloaded, the circuit outputs approximately 18V DC, and under full load, the voltage drops to around 12V DC. Additionally, it features an output buffer amplifier, which enhances current gain and voltage regulation.

          Battery Eliminator Circuit Diagram

          A BEC battery eliminator circuit consists of several key components that regulate voltage and maintain stability. A basic battery eliminator circuit diagram includes:

          • Voltage Regulator – The core component that steps down voltage.
          • Capacitors – Stabilize the output voltage and filter noise.
          • Diodes – Provide reverse polarity protection to prevent damage.
          • Input and Output Terminals – Allow connection to a power source and the electronics that need power.

          Below is a series circuit diagram of the battery eliminator circuit, which can be used as a replacement for the 9VPP3 battery. The circuit given here can be used to power any device powered by a 9V battery. Transformer T1 reduces the supply voltage and bridge D1 performs rectification. Capacitor C1 is a filter. The ICLM317T is a voltage regulator. If the values of R1, R2, and R3 are selected, the output voltage of IC1 will be stable at 9 volts.

          Battery Eliminator Circuit Diagram

          What Does a Battery Eliminator Circuit Do?

          A battery eliminator circuit provides a stable and regulated power supply to electronic components that would otherwise require a separate battery. It ensures that these components receive the correct voltage level, preventing damage due to overvoltage or undervoltage. The mainly functions of a BEC including:

          • Voltage Regulation – Converts high voltage from the main power source into a stable lower voltage for sensitive electronics.
          • Weight Reduction – Eliminates the need for extra batteries, making devices lighter and more efficient.
          • Power Management – Protects components from voltage fluctuations and power surges.
          • Improved Efficiency – Reduces power wastage and enhances performance in drones, RC models, and embedded systems.

          For example, in an RC car, the motor may run on a 7.4V or 11.1V battery pack, but the receiver and servos require only 5V or 6V.

          How Does a Battery Eliminator Circuit Work?

          A battery eliminator circuit works by taking power from a high-voltage source, regulating it, and supplying a stable output voltage. The working principle varies based on whether it is a linear BEC or a switching BEC.

          A linear BEC operates like a traditional voltage regulator, reducing voltage by converting excess energy into heat. For instance, if a 12V input is required to provide 5V output, the extra 7V is dissipated as heat. This method is simple but inefficient for high-power applications since it generates excess heat.

          While different with linear BEC, a series BEC (also known as SBEC or UBEC) uses a high-frequency switching regulator to convert voltage without significant heat loss. Instead of dissipating excess voltage, it switches the power on and off rapidly, storing and releasing energy efficiently.

          How Does a Battery Eliminator Circuit Work?

          Battery Eliminator Circuit Uses

          A BEC is used in various applications where a stable power source is needed. Some of the most common uses include:

          • RC Vehicles and Drones – Powers receivers, servos, and electronic speed controllers (ESCs).
          • FPV Systems – Supplies steady voltage for cameras, video transmitters, and OSD modules.
          • Embedded Systems – Provides regulated power to microcontrollers, sensors, and digital circuits.
          • Power Tools – Eliminates the need for disposable batteries in low-voltage applications.
          • Testing and Prototyping – Used in laboratories and research to power circuits with precise voltage levels.

          What Is the Difference Between BEC and UBEC?

          A BEC and UBEC (Universal Battery Eliminator Circuit) serve the same function but differ in design and efficiency.

          FeatureBECUBEC
          TypeCan be linear or switchingAlways a switching regulator
          EfficiencyLower for linear BECsHigher efficiency
          Heat Generation  Higher in linear BECsMinimal due to switching technology
          Current HandlingLimitedCan handle higher currents
          Ideal UseLow-power applicationsHigh-power RC and drone systems

          A UBEC is a more advanced version of a BEC, commonly used in RC drones, FPV systems, and high-current applications where power efficiency is crucial.

          BEC in FPV Drone Flight Controllers

          In FPV (First-Person View) drones, a battery eliminator circuit drone is used to maintain stable voltage levels across different electronic components. Flight controllers, video transmitters, and cameras all require a reliable power source to function properly. Without a BEC, these components would need separate batteries, adding unnecessary weight and complexity to the drone.

          Drones typically use high-voltage LiPo (Lithium Polymer) batteries, often rated at 3S (11.1V), 4S (14.8V), or even higher. However, many essential components operate at lower voltages, such as 5V or 9V. A BEC steps down the voltage from the main battery and ensures that all connected components receive the correct power level. By integrating BEC into a FPV drone, it functions:

          • Stable Flight Controller Operation

          The flight controller (FC) is the central processing unit of the drone, managing stabilization, motor control, and sensor inputs. A BEC prevents voltage fluctuations, ensuring smooth operation and reducing the risk of crashes due to power instability.

          • Reliable Power for FPV Cameras

          FPV cameras require a steady voltage to avoid video signal noise or sudden blackouts. A BEC eliminates power spikes, which could interfere with video transmission and affect flight visibility.

          • Consistent Power to Video Transmitters (VTX)

          The video transmitter (VTX) sends live footage from the drone to the FPV goggles or monitor. Inconsistent power can cause signal drops, static, or overheating. A BEC delivers a clean, regulated voltage, improving video signal stability.

          • Prevents Overheating and Component Damage

          Directly connecting a high-voltage battery to low-voltage components can cause overheating and failure. A BEC protects these parts, extending their lifespan and reducing the chance of mid-flight failures.

          Many modern flight controllers include an integrated BEC, simplifying power distribution. However, for higher power demands, external switching BECs (UBECs) provide better efficiency and handle larger current loads without overheating.

          At Best Technology, we provide drone printed circuit boards with battery eliminator circuits. We have passed AS9100D certifications, and set a specialized QA system according to AS9100D, build up procedure to aim specifically at the prevention of problems and the elimination of root causes, provides complete traceability of material and detailed processing history for all products manufactured. If you are interested in the manufacturing of drone PCB with BECs, you are welcome to touch us for more details.

          You may also like