pcb
Home > Blog

Archive for the ‘PCB Technology’ Category

What is beveler in pcb?
星期一, 7 10 月, 2024

PCB beveler is a less well-known but very important tool, but it plays a vital role in the manufacturing and assembly process of PCB (printed circuit board). It is a tool specifically used to create bevels or chamfers around the edges or holes of PCB.

What is a PCB Beveler?

PCB beveler is a device used to bevel (chamfer) the edges of printed circuit boards (PCBs). Its functions include improving the electrical performance of PCBs, dispersing the electric field through beveling, reducing the risk of electrical breakdown; enhancing the mechanical properties of PCBs, preventing stress concentration and cracking at the edges; facilitating subsequent processing and assembly work, avoiding scratching other electronic components or damaging component pins during the plug-in process.

What is beveler in pcb?

It has the advantages of high precision, high efficiency, low noise, and low energy consumption. It is widely used in the electronics industry, especially in the production process of consumer electronic products such as smartphones and tablets, which can improve production efficiency and product quality.

What is Edge Bevel in PCB?

Edge bevel is the process of making a transition edge between two sides of a PCB, usually on the outer edge of the PCB. Bevel is often used for edge connectors to allow for smoother insertion into another circuit board socket. Edge connector pins are often called gold fingers because they are plated with gold and have multiple parallel groups together.

Why do PCB edges need to be beveled?

The main reason why PCB edges need to be beveled is to increase the contact area, reduce contact resistance, and improve the stability of electrical connections.

The bevel process increases the contact area between the gold finger and other connectors by processing the PCB edge into a bevel, thereby reducing the contact resistance and improving the stability and reliability of signal transmission.

Specifically, the bevel process has the following advantages in application:

  • ‌Increase contact area‌: Beveled edges can increase the contact area between the gold finger and the socket, thereby increasing friction and connection stability.
  • Reduce contact resistance‌: The bevel design reduces the pressure concentration at the contact point, thereby reducing the contact resistance and reducing the loss in signal transmission.
  • ‌Adapt to different application scenarios‌: According to the specific application scenarios and equipment requirements, the bevel angle can be adjusted between 15° and 45° to meet different spatial layouts and electrical connection requirements‌.

The use of PCB beveling machines further improves the accuracy and efficiency of the beveling process. This mechanical equipment can accurately control the bevel angle through a high-precision mechanical transmission system and an efficient grinding process to ensure processing quality and production efficiency.

What are the Benefits of PCB Edge Beveling?

The main benefits of PCB edge beveling include enhanced aesthetics, easy installation, improved electrical performance, and reduced mechanical stress. ‌

First, the beveling process can enhance the aesthetics of the circuit board. By cutting the PCB edge at a specific angle, the beveling process makes the appearance of the circuit board more refined and beautiful, which can significantly improve the overall visual effect of the product‌.

Secondly, the beveling process is easy to install. The beveling design can better adapt to the structural design of various electronic devices, making the assembly of PCB boards and other components more convenient and precise, and the design of the beveling angle can better achieve the coordination of PCB boards with other components‌.

What is beveler in pcb?

In addition, the beveling process can also improve electrical performance. Bevel design can increase the contact area and reduce the contact resistance, thereby improving the stability and reliability of signal transmission.

Finally, bevel design can reduce mechanical stress. The design of the beveled rectangle allows the socket to slowly and gradually enter or exit the jack when plugging and unplugging, thereby reducing the mechanical stress during plugging and unplugging and extending the service life of the socket and jack.

What are the limitations of PCB edge beveling?

The main limitations of PCB edge beveling include the design of the bevel angle, the spacing requirements between the components and the board edge, and the requirements for cutting accuracy and speed. ‌

First, the design of the bevel angle needs to be determined according to the specific application scenario and equipment requirements. The common bevel angle range is between 15° and 45°.

In some devices with high requirements for plugging and unplugging force and contact stability, a smaller bevel angle may be selected to increase the contact area and friction between the gold finger and the socket to ensure the stability of signal transmission; while in some occasions with strict restrictions on spatial layout, a larger bevel angle may be used to better realize the assembly of PCB boards and other components. ‌

Finally, cutting accuracy and speed are also important limiting factors. PCB beveling machines need to have high-precision cutting capabilities and be able to accurately cut within the specified size range. The cutting accuracy directly affects the quality and reliability of the circuit board.

How Does PCB Beveling Work?

PCB beveling machines are usually composed of a frame, a transmission system, a grinding system, a positioning fixture, and a protective device.

The transmission system uses high-precision gears or screw drives to ensure processing accuracy. The grinding system consists of a grinding head and a coolant system, etc., which are used to grind PCB boards. The positioning fixture is used to fix the PCB board to ensure the accuracy and stability of the processing, while the protective device is to protect the safety of the operator.

What is beveler in pcb?

During the operation, first check whether the beveling machine is operating normally. If there is a problem, it needs to be repaired. Then, set the beveling angle according to customer needs or the default 45° angle.

Next, adjust the angle of the gong section and the table, adjust the distance of the steel plate according to the thickness of the board, and use a copper plate of the same thickness to test the knife to ensure that the angle of the bevel of the beveled board meets the requirements.

Finally, the grinding process is carried out through the grinding system. The grinding head rotates at a high speed and applies a certain amount of pressure on the PCB board, thereby processing its edge into a bevel.

What are the Applications of PCB Beveling?

The core application of the PCB beveling process is to increase the contact area and reduce the contact resistance, thereby improving the stability and efficiency of the connection. This process is common in the beveling of gold fingers, especially on devices such as computer memory bars and graphics cards. The bevel design of gold fingers can significantly improve the data transmission speed and reliability.

‌Specific application scenarios‌ include:

  • ‌Computer memory bars and graphics cards‌: On these components, the bevel design of gold fingers can not only increase the contact area and reduce the contact resistance, but also prevent oxidation to a certain extent and extend the service life.
What is beveler in pcb?
  • Other communication equipment‌: In addition to computer memory bars and graphics cards, the beveling process of gold fingers is also used in various devices that communicate through digital signals, such as consumer electronics, smartphones, and smart watches.

In short, the beveler in PCB is a tool specifically used to create bevels or chamfers around the edges or holes of PCBs. It has the functions of improving the reliability of PCB, facilitating assembly and improving appearance. When using the bevel, pay attention to the correct operation method and maintenance to ensure its normal operation and service life.

You may also like

Board electronics with holes
星期五, 4 10 月, 2024

Board electronics with holes The types of vias in PCB include through holes, blind holes and buried holes, which have different characteristics and requirements in design and manufacturing. The selection of the appropriate via type should consider the number of PCB layers, wiring density, signal frequency, cost budget and production process. The via design should pay attention to avoid affecting the welding quality, preventing electrical short circuits, and saving costs in high-density packaging.

What are the holes in a PCB called?

What are the holes on PCB called? What are the holes in the circuit? The holes on PCB can be roughly divided into 3 types, screw holes (mounting holes), conductive holes (vias), and plug-in holes.

Screw holes: Screw holes are used for fixing.

Conductive holes: Conductive holes (also called vias) are used for conducting electricity just like circuits.

Plug-in holes: Plug-in holes are of course used to plug in various parts, such as diodes, transistors, capacitors, inductors, etc.

What is a through hole

What is a through hole? Through holes, also known as perforations, are holes in a PCB that go all the way through the board. Their main purpose is to provide electrical connections for component pins while allowing soldering on both sides of the board.

1.A via is a special through hole whose wall is metallized to achieve electrical connection between different layers on a circuit board. This type of hole is usually used to connect component pins to internal circuits, or to achieve electrical connection between different layers in a multi-layer PCB. Vias need to be metallized during the PCB manufacturing process, which usually includes drilling, desmearing, chemical copper plating, and electroplating.

What is a through hole

2.Non-conducting holes are the opposite of through holes. Their hole walls are not metallized, so they do not have electrical connection functions. These holes are mainly used for mechanical fixation, heat dissipation or identification purposes. Non-conducting holes are relatively simple in the PCB manufacturing process, and only drilling operations are required.

What is a through hole

What is a blind via?

A blind via is a hole that extends from one side of a PCB to a certain internal layer without penetrating the entire board. The emergence of blind vias is mainly due to the development of HDI technology, which provides circuit designers with greater flexibility and more compact layout. Blind vias are usually used to connect surface mount components (SMD) to internal circuit layers, or to connect circuits between different internal layers.

What is a blind via?

What are buried vias?

Buried vias are holes located inside the PCB that do not penetrate any side of the board. They are completely hidden inside the board and are used to connect circuits between different internal layers. Buried vias are especially useful in HDI boards because they can reduce the overall thickness of the board while maintaining electrical connections between internal circuits.

What is a microvia?

Microvia refers to a hole with a smaller diameter, usually at the micron level. The emergence of microvia technology enables PCB designers to achieve more complex circuit layouts in a smaller space. Microvias are often used in high-density, high-reliability electronic devices such as mobile phones and tablets. The manufacture of microvias requires high-precision drilling equipment and technology to ensure the accuracy and reliability of the holes.

What is a microvia?

What are Mounting holes?

What are Mounting holes?Locking holes are auxiliary holes used in the PCB manufacturing and assembly process to accurately locate and fix the circuit board. They are usually located at the edge or specific position of the PCB to ensure that the circuit board can be accurately aligned and fixed during manufacturing, testing and assembly. The locating holes do not participate in the connection of the circuit, but are essential to ensure the quality and performance of the circuit board.

What are Mounting holes?

What are Mounting holes

What are thermal vias?

Thermal vias are holes designed specifically for heat dissipation, usually large and can run through the entire PCB or multiple layers. Their role is to reduce heat buildup on the circuit board by increasing surface area and air flow, thereby improving the stability and reliability of the device. Thermal vias are particularly important in high-performance, high-power electronic devices.

What are thermal vias?

FAQ About board electronics with holes

How to solve the contradiction between manual routing and automatic routing of high-speed signals?

Most of the current powerful routing software’s automatic routing tools have set constraints to control the routing method and the number of vias. The routing engine capabilities and constraint setting items of various EDA companies are sometimes very different. For example, whether there are enough constraints to control the winding method of the serpentine, whether the routing spacing of the differential pair can be controlled, etc. This will affect whether the routing method generated by automatic routing can meet the designer’s ideas. In addition, the difficulty of manually adjusting the routing is also related to the capabilities of the routing engine. For example, the pushing ability of the routing, the pushing ability of the via, and even the pushing ability of the routing pair copper. Therefore, choosing a routing tool with strong routing engine capabilities is the solution.

Will adding test points affect the quality of high-speed signals?

As for whether it will affect the signal quality, it depends on the method of adding test points and how fast the signal is. Basically, the additional test points (not using the existing vias (via or DIP pins) as test points) may be added to the line or a small section of wire may be pulled out from the line. The former is equivalent to adding a very small capacitor to the line, while the latter is an additional branch. Both of these situations will have some impact on high-speed signals, and the extent of the impact is related to the frequency speed of the signal and the edge rate of the signal. The magnitude of the impact can be learned through simulation. In principle, the smaller the test point, the better (of course, it must meet the requirements of the test equipment) and the shorter the branch, the better.

Can you introduce some foreign technical books and data on high-speed PCB design?

Now the application of high-speed digital circuits includes communication networks and calculators and other related fields. In the communication network, the operating frequency of PCB boards has reached around GHz, and the number of layers is as many as 40 layers as far as I know. Due to the advancement of chips, the operating frequency of calculator-related applications, whether it is a general PC or server, has reached 400MHz (such as Rambus) or above. In response to the demand for high-speed and high-density routing, the demand for blind/buried vias, mircrovias and build-up process technology is gradually increasing. These design requirements can be mass-produced by manufacturers.

Does the design of rigid-flexible boards require special design software and specifications? Where can I undertake the processing of such circuit boards in China?

Can I use general PCB design software to design flexible printed circuits (Flexible Printed Circuit). The Gerber format is also used for FPC manufacturers to produce. Since the manufacturing process is different from that of general PCBs, each manufacturer will have its own restrictions on line width, line spacing, and aperture (via) based on their manufacturing capabilities. In addition, some copper foil can be laid at the turning point of the flexible circuit board for reinforcement. As for the manufacturer, you can search for “FPC” as a keyword on the Internet and you should be able to find it.

If the size of the circuit board is fixed, if the design needs to accommodate more functions, it is often necessary to increase the routing density of the PCB, but this may lead to increased mutual interference between the routings, and at the same time, the impedance cannot be reduced if the routing is too thin. Please introduce the techniques in the design of high-speed (>100MHz) high-density PCBs?

When designing high-speed and high-density PCBs, crosstalk interference does need to be paid special attention to because it has a great impact on timing and signal integrity. Here are a few things to note:

Control the continuity and matching of the characteristic impedance of the trace.

The size of the trace spacing. The spacing commonly seen is twice the line width. Through simulation, you can know the impact of trace spacing on timing and signal integrity and find the tolerable spacing. The results of different chip signals may be different.

Choose an appropriate termination method.

Avoid the same routing direction of the upper and lower adjacent layers, or even have traces overlapped up and down, because this kind of crosstalk is greater than the case of adjacent traces on the same layer.

Use blind/buried vias to increase the trace area. However, the production cost of the PCB board will increase. It is indeed difficult to achieve complete parallelism and equal length in actual implementation, but it should be done as much as possible.

In addition, differential termination and common mode termination can be reserved to mitigate the impact on timing and signal integrity.

The RF part, IF part, and even the low-frequency circuit part of the outdoor unit are often deployed on the same PCB. What are the material requirements for such PCB? How to prevent interference between RF, IF, and even low-frequency circuits?

Hybrid circuit design is a big problem. It is difficult to have a perfect solution.

Generally, RF circuits are laid out and wired as an independent single board in the system, and there will even be a special shielding cavity. Moreover, RF circuits are generally single-sided or double-sided boards, and the circuits are relatively simple. All of these are to reduce the impact on the distributed parameters of RF circuits and improve the consistency of RF systems. Compared with general FR4 materials, RF circuit boards tend to use high-Q substrates. The dielectric constant of this material is relatively small, the distributed capacitance of the transmission line is small, the impedance is high, and the signal transmission delay is small. In hybrid circuit design, although RF and digital circuits are made on the same PCB, they are generally divided into RF circuit area and digital circuit area, and laid out and wired separately. Shielding is used between ground vias and shielding boxes.

You may also like

Single layer PCB manufacturer | Single sided PCB Design&Prototype
星期五, 27 9 月, 2024

What is a single-sided PCB circuit board

Single-sided PCB circuit board is a type of printed circuit board. Only one side of the PCB board has circuits (it can have holes or not), and the other side is a substrate or directly covered with insulating ink. There is no circuit and the whole board is transparent under strong light (except for individual boards and special process requirements). The cross section only contains copper foil on the side with circuits.
Single-sided PCB circuit board is obtained by etching copper-clad board. Copper-clad board consists of board base and copper foil. The board base is usually made of insulating materials such as glass fiber, and is covered with a layer of copper foil (usually oxygen-free copper).

Single layer PCB manufacturer

Single layer PCB manufacturer Best Technology has offered high-quality PCBs and the best PCB assembly & box building service all over the world since 2006. We are professional fabricator on PCB prototype, IPC Class III standard are available. You can get high-quality PCB board and PCBA at a very reasonable price.

Single layer PCB manufacturer

Single layer PCB design
Best Technology excels in PCB design, perform PI analysis, SI analysis, EMC test and DFM tests to ensure one-time successed PCB design. Over 20 professional engineers, all of them has more than 15+ years experience in PCB, we make sure every design is optimized for performance and manufacturability.

Single layer PCB prototype
As an industry-leading PCB prototype manufacturer, Best Technology offers 24 hours quick turn PCB prototype, PCB assembly and reliable small-batch PCB production. Free technical support and VIP one-to-one service.

Single layer PCB production
With over 18 years PCB manufacture experience, we dedicated to provide highest quality PCB for customers. We offer turnkey service from PCB design, PCB layout, PCB prototype, mass production and PCB assembly. Contact us to get an instant quote.

Single layer PCB assembly
Professional PCB assembly service, includes DFM/DFA checks, function/ICT testing, X-RAY, Online dual AOI, nitrogen reflow oven. 10+ SMT lines, free passive parts and Thorough Inspections! SMT, Thru-hole, BGA, QFN Assembly at Low Prices! No MOQ, complex and difficulty designs welcome!

Single-sided PCB production process

  1. Cutting
  2. Drilling or punching
  3. Screen printing circuit anti-etching pattern or using dry film
  4. Curing inspection and board repair
  5. Screen printing solder mask pattern (commonly used green oil)
  6. Screen printing character mark pattern, UV curing
  7. Preheating, punching and appearance
  8. Electrical open and short circuit test
  9. Pre-coating flux anti-oxidant (drying) or tin spraying hot air leveling
  10. Packaging and delivery

Single-sided PCB production capacity

Item Content
Material type : XPC  FR-1  FR-4  CEM-1
Surface finish : ENIG gold, HASL Immersion Tin, Chemical Silver OSP
Layer No : Single side, Multilayer PCB
Max PCB size: 1500mm*600mm
Min PCB size: 5mm*5mm
Min space/width: 0.1mm
Warp and Twist: ≤0.5%(board thickness:1.6mm,PCB size : 300mm*300mm)
Board thickness: 0.3-5.0mm
Copper thickness: 35um-240um
Outline Tolerance: ±0.15mm
V-CUT Precision: ±0.1mm
Capacity: 80000㎡/Month
PTH Dia tolerance: ±0.076mm
Outline tolerance: CNC :±0.1mm  punch:±0.15mm

What are the single-sided PCB materials?

What are the single-sided PCB materials

What are the single-sided PCB materials

Phenolic paper substrate
Phenolic paper substrate (commonly known as cardboard, plastic board, V0 board, flame retardant board, red-letter copper clad board, 94V0). The most commonly used product models of phenolic paper-based copper clad boards are FR-1 (flame retardant) and XPC (non-flame retardant). Single-sided copper clad boards can be easily judged from the color of the characters on the back of the board. Generally, red characters are FR-1 (flame retardant) and blue characters are XPC (non-flame retardant). This type of board is the cheapest compared to other types of boards.

Epoxy fiberglass cloth substrate
Epoxy fiberglass cloth substrate (commonly known as: epoxy board, fiberglass board, fiberboard, FR4), epoxy fiberglass cloth substrate is a type of substrate with epoxy resin as adhesive and electronic grade glass fiber cloth as reinforcing material. Its bonding sheet and inner core thin copper clad board are important substrates for making multi-layer printed circuit boards. The working temperature is high and its own performance is less affected by the environment. In terms of processing technology, it has great advantages over other resin fiberglass cloth substrates. This type of product is mainly used for double-sided PCBs. It is also about twice as expensive as phenolic paper substrates, and the commonly used thickness is 1.5MM.

Composite substrates
Composite substrates (commonly known as powder boards, etc., cem-1 boards are also called 22F in some places in China) mainly refer to CEM-1 and CEM-3 composite-based copper-clad boards. Copper-clad boards made of wood pulp fiber paper or cotton pulp fiber paper as core reinforcement materials and glass fiber cloth as surface reinforcement materials, both of which are impregnated with flame-retardant epoxy resin, are called CEM-1. Copper-clad boards made of glass fiber paper as core reinforcement materials and glass fiber cloth as surface reinforcement materials, both of which are impregnated with flame-retardant epoxy resin, are called CEM-3. These two types of copper-clad boards are the most common composite-based copper-clad boards. This type of board is cheaper than FR4 type boards.

Single-sided PCB circuit board price

Since the cost of single-sided PCB circuit boards is affected by many factors, including the cost of raw materials, production cost, production process, special requirements, etc., its exact pricing needs to be negotiated with its single-sided PCB circuit board supplier. The general unit price calculation formula is: (length MM) × (width MM) × 0.01 × unit price (yuan/square meter) ÷ 10000 (rounded to 3 decimal places)
For specific single-sided PCB quotes, please consult bestpcbs.

Single-sided PCB circuit board price

Single-sided PCB circuit board price

Single-sided PCB applications and features

Single-sided PCBs are increasingly widely used due to their many unique advantages;
High density: For decades, high-density printed boards have developed with the improvement of integrated circuit integration and the advancement of installation technology.
High reliability: Through a series of inspections, tests and aging tests, PCBs can work reliably for a long time (usually 20 years).
Designability: According to the requirements of various performances (electrical, physical, chemical, mechanical, etc.) of single-sided boards, printed boards can be designed in a short time and efficiently through design standardization.
Manufacturability: Through modern production management, standardization, scale (quantification), automation, etc. can be achieved to ensure the consistency of product quality.
Testability: Complete test methods, standards and various test equipment and instruments have been established to detect and evaluate the qualification and service life of a single PCB.
Assembly: Circuit boards facilitate standardized assembly of various components to achieve automated, large-scale mass production. At the same time, circuit boards and various component assemblies can be assembled into larger components and systems, and even complete machines.

Maintainability: Circuit boards and various component parts are manufactured with standardized designs and scales. If a system fails, components can be replaced quickly and conveniently. The system can recover quickly due to this flexibility. More examples include system miniaturization, lightweight, high-speed signal transmission, etc.

FAQ About single sided pcb

FAQ About single sided pcb

Q: When laying out the board, if the lines are dense, there may be more vias, which will of course affect the electrical performance of the board. How can I improve the electrical performance of the board?
A: For low-frequency signals, vias are not a big deal, but for high-frequency signals, try to reduce vias. If there are many lines, you can consider multi-layer boards;

Q: Is it better to add more decoupling capacitors on the board?
A: Decoupling capacitors need to be added with appropriate values ​​at appropriate locations. For example, add them to the power supply port of your analog device, and use different capacitance values ​​to filter out stray signals of different frequencies;

Q: What are the standards for a good board?
A: Reasonable layout, sufficient power redundancy of power lines, high-frequency impedance, and simple low-frequency routing.

Q: How much difference do through holes and blind holes have on signals? What are the application principles?
A: Using blind or buried holes is an effective way to increase the density of multi-layer boards, reduce the number of layers and board size, and greatly reduce the number of plated through holes. But in comparison, through holes are easy to implement in terms of process and have lower costs, so through holes are generally used in designs.

Q: What kind of layout can achieve the best heat dissipation effect?
A: There are three main sources of heat in PCB: (1) heat generated by electronic components; (2) heat generated by the PCB itself; (3) heat transmitted from other parts. Among these three heat sources, the heat generated by components is the largest and is the main heat source, followed by the heat generated by the PCB board. The heat transmitted from the outside depends on the overall thermal design of the system and is not considered for the time being. The purpose of thermal design is to take appropriate measures and methods to reduce the temperature of components and PCB boards so that the system can work normally at a suitable temperature. This is mainly achieved by reducing heat generation and accelerating heat dissipation.

Q: Can you explain the proportional relationship between the line width and the size of the matching via?
A: This is a good question. It is difficult to say that there is a simple proportional relationship because the two simulations are different. One is surface transmission and the other is ring transmission. You can find a via impedance calculation software on the Internet, and then keep the impedance of the via consistent with the impedance of the transmission line.

Q: In an ordinary PCB circuit board with an MCU control, but without high current and high-speed signal requirements, is it better to lay a layer of ground wire around the outermost edge of the PCB to wrap the entire circuit board?
A: Generally speaking, just lay a complete ground.

Q: How to deal with the avoidance of vias during the wiring process of high-speed PCB, what good suggestions are there?
A: For high-speed PCB, it is best to make fewer vias and solve the need to increase vias by adding signal layers.

Q: How to select the thickness of the power trace in PCB board design? Are there any rules?
A: You can refer to: 0.15×line width (mm)=A, and copper thickness also needs to be considered.

Q: When digital circuits and analog circuits are on the same multi-layer board, should analog ground and digital ground be arranged on different layers?
A: This is not necessary, but analog circuits and digital circuits should be placed separately.

Q: How many vias are generally suitable for digital signal transmission? (Signals below 120Mhz)
A: It is best not to exceed two vias.

You may also like

What is ate in pcba testing?
星期四, 26 9 月, 2024

Automatic test equipment (ATE) plays a vital role in the field of electronic manufacturing, especially in the testing of printed circuit board assemblies (PCBA). In order to ensure the quality of PCBA, automatic test equipment (ATE) has become an indispensable force in the PCBA testing process with its high efficiency, accuracy and reliability.

What are the 7 types of PCB testing methods?

The common detection methods of PCB (Printed Circuit Board) boards are mainly used to detect the quality and accuracy of PCB boards, which is an indispensable part of the PCB production process. The following are 7 commonly used PCB board detection methods:

  • 1. Visual inspection: Visual inspection is the simplest detection method. It observes the surface of the PCB board with human eyes to find possible defects, such as welding problems, component position offset, etc.
What is ate in pcba testing?
  • 2. X-ray detection: X-ray detection is mainly used to detect problems hidden inside the PCB board, such as welding quality, BGA ball welding quality, inner layer line routing problems, etc.
  • 3. Non-destructive testing: Non-destructive testing is a non-destructive detection method. Commonly used technologies include infrared testing, ultrasonic testing and electromagnetic wave testing.
  • 4. AOl (Automated Optical Inspection): AOl is a method of automated inspection using optical equipment, which detects problems on the surface of PCB boards through high-resolution camera systems and pattern recognition software.
  • 5. ATE (Automatic Test Equipment): ATE is an automatic test equipment used to test the electrical performance and functions of PCB boards.
  • 6. Vibration test: Vibration test is used to detect the reliability and durability of PCB boards in vibration environments. By applying vibrations of different frequencies and amplitudes, the problems that may occur in actual use of PCB boards can be evaluated.
  • 7. Thermal shock test: Thermal shock test is used to detect the performance of PCB boards in temperature change environments. By rapidly changing the temperature, the thermal expansion, thermal stability and welding quality of PCB boards can be evaluated.

These methods can comprehensively evaluate the quality and performance of PCB boards and detect potential problems in a timely manner to ensure the reliability and stability of PCB boards.

What is ate testing in semiconductor?

ATE testing is an important link in the semiconductor industry for testing the functional integrity and reliability of integrated circuits (ICs). It is the abbreviation of Automatic Test Equipment, which is a device that tests devices, circuit boards, and subsystems through computer control.

ATE testing plays a vital role in the semiconductor manufacturing process. It is a key step to ensure the quality of IC products. The test content includes DC parameter testing, AC parameter testing, functional testing, etc. These tests are designed to evaluate the performance, function, and reliability of the chip.

The basic principle of the test is to apply stimulus to the chip through the test vector, measure the response output of the chip, and compare it with the expected result to determine whether the chip meets the specification requirements.

ATE testing not only involves testing various parameters of the chip, but also includes structural testing of the chip, that is, detecting manufacturing defects to ensure the quality and reliability of the chip.

In addition, ATE testing also includes testing of voltage, current, frequency, pulse, temperature and other aspects of the chip to achieve comprehensive testing of the static parameters and dynamic performance of semiconductor chips.

In general, ATE testing is an important means of quality control of integrated circuits in the semiconductor industry. It improves the efficiency and accuracy of testing through automation, ensures the quality and reliability of semiconductor chips, and is an indispensable and important link in the semiconductor manufacturing process.

What is an ATE PSU?

ATE PSU refers to the power supply unit (Power Supply Unit) of Automatic Test Equipment. In the field of electronic testing, ATE (automatic test equipment) is mainly used for integrated systems of power supply electrical performance testing. The system consists of test equipment hardware and test system software, and is designed to provide efficient and accurate automatic testing functions.

What is ate in pcba testing?

The key to ATE test system integration is to combine test software, test hardware (such as oscilloscopes, digital multimeters, vector networks, etc.) with communication technology to meet the testing needs of products. With the increasing complexity of electronic products, the role of ATE test system integration has become indispensable.

As part of the ATE system, the power supply unit (PSU) is responsible for providing a stable power supply for the entire test system to ensure the accuracy and reliability of the test.

Therefore, ATE PSU is one of the very important components in the ATE system, and its performance directly affects the overall efficiency and accuracy of the ATE test system.

What are the advantages of ATE?

ATE test system has the following significant advantages:

  • ‌High efficiency and time saving‌: ATE test system can automatically complete the test without manual intervention, which greatly saves test time and improves production efficiency‌.
  • ‌Easy to operate‌: The operation is simple and easy to understand, easy to get started, which reduces the skill requirements for operators and reduces training costs‌.
  • ‌Safe and reliable‌: The danger of manual operation can be avoided during the test process to ensure the life safety of employees‌.
  • ‌Improve test efficiency‌: Automatically execute the test program, greatly shorten the test cycle, reduce manual intervention, and thus significantly improve test efficiency‌.
  • ‌Flexibility and scalability‌: It can be flexibly configured and adjusted according to different test requirements, and supports customized configuration of various test modules and sensors‌.
  • Reduced labor costs‌: Reduced dependence on labor, reduced labor costs, and improved labor efficiency‌.
  • ‌Strong anti-interference ability‌: The internal mechanical properties are good, and various external interferences can be eliminated to ensure the stability and accuracy of the test results‌.

In summary, the ATE test system is of great significance in improving production efficiency, reducing costs, ensuring employee safety, and optimizing quality management. It is widely used in product testing in semiconductors, electronics, automobiles and other fields‌.

What is ate in PCB?

ATE in PCB refers to automatic test equipment (Automatic Test Equipment). ATE is a computer-controlled device used to test devices, circuit boards, and subsystems.

It replaces manual labor through computer programming and automatically completes the test sequence. In the semiconductor industry, ATE specifically refers to an automatic tester for integrated circuits (ICs), whose functions include detecting the integrity of integrated circuit functions and ensuring the quality of integrated circuit manufacturing.

In a broader context, ATE equipment can perform chip parameter testing, functional testing, performance testing, fault detection, reliability testing, etc., and plays a vital role in the semiconductor manufacturing process.

What is the difference between automatic and manual testing?

In PCB testing, there are the following differences between automatic testing and manual testing:

  • 1. Automatic testing relies on equipment and software, and is programmed; manual testing is manually operated and more flexible.
  • 2. Automatic testing is high-speed and efficient, and can run continuously; manual testing is slow, easy to fatigue and low efficiency.
  • 3. Automatic testing has high accuracy and good consistency; manual testing is easily affected by human factors and has poor consistency.
  • 4. Automatic testing equipment has high investment but low operating cost; manual testing equipment has low cost but high labor cost.
  • 5. Automated testing is suitable for large-scale production and complex circuit boards; manual testing is suitable for small-batch production and fault diagnosis.

What is the purpose of automated testing?

The purpose of automated testing in PCB is to ensure that each circuit board can meet the high performance required in complex electrical applications, and to improve product quality and performance by detecting and repairing defects. ‌

Automated testing, especially in the PCB (printed circuit board) production process, plays a vital role. This test uses machine scanners with light imaging to visually inspect the finished circuit board and evaluate the process quality by using technologies such as automated optical inspection (AOI).

What is ate in pcba testing?

The importance of automated testing lies in its ability to detect and repair defects at multiple stages of production, including bare board inspection, solder paste inspection, pre-reflow and post-reflow. Improve production speed and productivity to ensure that tasks are completed on time.

Conclusion:

Automated test equipment (ATE) plays a key role in PCBA testing. It can improve test efficiency, accuracy and product quality, reduce test costs, and provide strong support for electronic manufacturing companies. With the continuous development of electronic technology, ATE will also continue to upgrade and improve to adapt to the increasingly complex PCBA testing needs.

You may also like

PCB Quote Packaging is What Type of Engineering?
星期二, 10 9 月, 2024

PCB Full Form

PCB stands for Printed Circuit Board, a key component in almost all electronic devices. It connects and supports electronic components using conductive tracks, pads, and other features. The design and production of PCBs require precise engineering, as they are crucial for the functionality of the final product.

What is PCB Quote Packaging?

PCB quote packaging refers to the process of gathering and organizing all the details needed to estimate the cost of producing a PCB. This includes not only the design specifications but also the materials, manufacturing processes, and other engineering considerations. It’s not just a financial calculation but a complete engineering analysis that ensures the quote is accurate, feasible, and optimized for production.

The quote must consider every detail that affects production—like material types, size, complexity, and production volume. The aim is to package all these details into a clear, comprehensive quote, ensuring the client understands what they are paying for and why.

Why is Engineering Important in PCB Quote Packaging?

Engineering plays a vital role in the PCB quoting process because it’s not just about estimating costs. It’s about understanding the technical requirements and ensuring that every aspect of the design and production is accounted for. Engineers analyze the design, materials, and manufacturing methods to ensure the quote reflects the real cost of production.

Without engineering insight, a quote could be inaccurate, leading to cost overruns or production delays. Engineers make sure that all technical details, such as layer count, trace width, and component placement, are properly considered.

What Are the Key Factors in a PCB Quote?

Several factors come into play when preparing a PCB quote:

PCB Quote Packaging is What Type of Engineering?

1. Type of manufacturing process

The technical type of PCB determines its complexity and cost. For example, simple single panels cost much less than multi-layer panels, while flexible circuits (FPC) or rigid and flexible panels require more complex manufacturing processes and naturally cost more. In addition, whether advanced technologies such as microvias, laser drilling, blind holes or buried holes are required can also have a significant impact on the quotation.

2. Material type

Materials are an important part of PCB costs. Common materials include FR4, ceramics, metal substrates, etc. FR4 is the most common base material and is suitable for most conventional applications, but for high-frequency, high-temperature environments, ceramic or metal-based materials may be more suitable, but their price is relatively high. Choosing the right material not only affects the performance, but also directly affects the cost.

3. IPC level

IPC grades reflect the quality standards of PCB manufacturing, commonly used are IPC-A-600 grades 1, 2 and 3. The higher the grade, the more stringent the manufacturing requirements, and the corresponding increase in cost. For example, grade 3 PCBS are usually used in high-demand fields such as aerospace and medical equipment, which require higher accuracy and quality control, so the price is higher.

4. Circuit design

PCB circuit design complexity directly affects manufacturing costs. Including wire width, spacing, hole size and so on, the production process has put forward different requirements. High density interconnect (HDI) boards typically require more elaborate wiring techniques and may involve the use of microvias, which will increase the difficulty and cost of manufacturing.

5. PCB size and yield

The size of the PCB directly affects the amount of material used, and the larger the board, the more material is needed. In addition, the yield is also an important factor affecting the quotation. PCB manufacturing with complex design or high density lines is prone to defects, resulting in decreased yield. That means manufacturers may need to produce more boards to meet orders, increasing costs.

6. Material thickness

Different applications require different thicknesses of PCB materials. The standard FR4 thickness is usually 1.6mm, but thinner or thicker boards are sometimes used. Changes in material thickness can affect the overall cost, especially if thicker sheets require special processing or higher strength, and manufacturing expenses will increase accordingly.

7. Copper thickness

The copper thickness in the PCB usually has a standard choice, such as 1oz, 2oz or even thicker copper layers. The higher the copper thickness, the better the conductivity of the PCB, suitable for high-current applications, but the increase in copper thickness will significantly increase the manufacturing cost, especially in the plating and etching process requires additional materials and processes.

8. Stack-up method

The stacking mode determines the number of layers and the interlayer structure of the PCB. Complex multilayer boards or HDI boards require more complex lamination processes. For example, the lamination method may involve multiple pressing, the use of prepregs or special insulation materials. Each additional layer requires more manufacturing steps, resulting in increased costs.

9. Quantity

The quantity of the order has a direct impact on the PCB quotation. High-volume production can reduce unit prices by spreading tooling and setup costs, while small-batch orders are typically more expensive due to relatively high production preparation and start-up costs.

10. Delivery date

The shorter the delivery time, the higher the quotation. Rush orders require prioritizing production, which can disrupt the plant’s production schedule and require additional resource deployment. To meet urgent delivery deadlines, manufacturers may need to work overtime or speed up production, increasing overall production costs.

These are just a few examples, but they show how engineering considerations are woven into every part of the quoting process.

PCB Manufacturing Process

How Do Engineers Calculate PCB Manufacturing Costs?

Engineers calculate PCB manufacturing costs by considering the design specifications and the production methods needed to meet those requirements. They start by analyzing the PCB’s layout and design, which determines factors like layer count, trace width, and hole size. Each of these elements has a direct impact on the materials used and the manufacturing process.

They also consider the assembly process—whether it’s surface-mount or through-hole—and what testing will be required. After evaluating these details, they calculate the costs associated with each step of the manufacturing process. This ensures the final quote is both accurate and comprehensive.

What Type of Engineer Designs PCBs?

Engineers who design PCBs typically have a bachelor’s degree or above in electrical engineering, automation, computer science, or a related field ‌ and understand the basics of electronic design, printed circuit board (PCB), and electronics manufacturing in the PCB industry. These engineers need to master PCB design software such as Altium Designer, Eagle PCB, PADS, or CAD, etc., as well as the use of related manufacturing and testing tools. At the same time, they need to have a knowledge of the PCB industry, a certain circuit design and electronic components knowledge, including digital and analog circuits, signal processing, power electronics, embedded systems, communication technology, etc. In addition, holding certificates such as IPC-2221/2222, IPC-A-600/610, and CID (Certified Interconnect Designer) can prove that they have relevant professional knowledge and skills, which can help improve their career competitiveness.

These engineers also need to have a strong sense of responsibility and team spirit, have good communication and coordination skills, and be able to work effectively with customers, manufacturers, and other team members. For junior engineers, it is recommended to study in a single point of depth, such as PCB design, SI simulation, thermal design, EMC design, product testing, etc., and then start from this advantage point to expand the scope of knowledge

What Materials Are Considered During PCB Quote Packaging?

The type of material used for a PCB is a major cost driver. Common materials include:

  • FR4

This is the most common material used in PCBs due to its balance of cost and performance. It’s versatile and reliable for most standard applications.

PCB Quote Packaging is What Type of Engineering?
  • Metal Core

Metal core PCBs are used in applications where heat dissipation is a concern, such as LED lighting. These boards are more expensive due to the metal layer.

PCB Quote Packaging is What Type of Engineering?
  • Ceramic

Ceramic materials are used for high-frequency or high-temperature applications. They are more costly but offer better performance in extreme conditions.

PCB Quote Packaging is What Type of Engineering?

Each material has its own manufacturing process, which also affects the cost. For instance, metal core boards may require different drilling techniques compared to standard FR4 boards. Engineers must consider these details when preparing a quote.

How Does the Choice of PCB Manufacturing Methods Impact the Quote?

The method used to manufacture the PCB can greatly impact the final cost. Common methods include:

  • Surface-Mount Technology (SMT): This is the most common method for modern PCB assembly. It’s efficient and cost-effective for most applications.
  • Through-Hole Technology (THT): This method is used for components that require a stronger mechanical bond. It’s more labor-intensive and, therefore, more expensive.
  • Flexible and Rigid-Flex Manufacturing: These types of PCBs require specialized processes and materials, which can increase the cost.

Additionally, advanced techniques like laser drilling for microvias or selective soldering for complex assemblies may be necessary for high-precision designs. Each of these methods requires careful consideration, and engineers must choose the best process for both the design and the budget.

Who Designs PCB?

Since 2006, Best Technology has been the leading PCB quick turn manufacturer specializing in both PCB prototype and production quantities, initially produced single-sided and double-sided printed circuit boards for the consumer electronics market. Now, we provide not only FR4 PCB, but also some special PCB like flex circuit, metal core PCB, ceramic PCB, extra thin PCB, HDI PCB, IC substrate, busbar PCB, heavy copper PCB and so on. We can make 50 layers PCB, and it is not our limit.

Nowadays, Best Technology has grown to become a major PCB manufacturer in Asia to serve in diverse customers base such as electronics appliance, communication, educational electronics, power supplies, automations.

For more information about PCB, or to learn more about the online quote and ordering process, please visit www.bestpcbs.com

You may also like

PCB Assembly manufacturer High Quality & Fast Delivery
星期一, 9 9 月, 2024

What is pcba?

PCBA is the abbreviation of Printed Circuit Board Assembly, which means “circuit board assembly” or “circuit board assembly”. ‌It refers to installing electronic components on a printed circuit board and connecting the components to the circuit board through welding and other methods to form a complete circuit system.

This process involves multiple important links, including SMT (surface mount technology) mounting, DIP (dual in-line package) plug-in, etc., which eventually form a key component of electronic products. PCBA is not only the physical support of electronic equipment, but also provides a way to connect circuits, and also plays a role in protecting components and dissipating heat. In the manufacturing process of electronic products, the production process of PCBA includes steps such as PCB design, manufacturing, component placement, welding and testing to ensure the functionality and reliability of the product.

What does pcba stand for in electronics

PCBA stands for Printed Circuit Board Assembly in electronic products‌. PCBA is the process of assembling and soldering electronic components on a printed circuit board to form a complete circuit board. It is an important part of modern electronic products, including mobile phones, computers, cars, home appliances, etc.

. PCBA processing involves several important links, such as SMT (surface mount technology) and DIP (dual in-line package) plug-ins, which ensure the correct placement of electronic components and the reliability of the circuit. In addition, the use of PCBA processing equipment and the improvement of manufacturing processes, such as printers and dispensing machines, have improved the yield and efficiency of PCBA processing products‌

What is pcba manufacturing

The manufacturing process of PCB (printed circuit board) involves multiple process links, including design, plate making, drilling, filling, electroplating, etc. These steps together constitute the manufacturing process of PCB.

  1. Design: First, according to the needs and layout design of the circuit, the circuit diagram is drawn using computer-aided design (CAD) software. This stage is very critical because it directly determines the function and performance of the PCB.
  2. Plate making: After the design is completed, the designed circuit diagram needs to be converted into a practical PCB board that can be made. This usually involves the use of photosensitive materials and special chemical treatments so that the circuit pattern can be accurately transferred to the PCB substrate.
  3. Drilling: After the plate making is completed, holes need to be drilled on the substrate according to the designed circuit pattern. These holes are used for subsequent wiring connections. The precision and accuracy of drilling are essential to ensure the normal operation of the circuit.
  4. Filling: After drilling, some substances, such as resin, need to be filled in the hole to enhance the structural strength and electrical insulation performance of the PCB.
  5. ‌Electroplated‌: In order to ensure good electrical connection, the PCB needs to be electroplated, usually by electroplating a layer of copper or other conductive materials on the copper foil. This step is very important to ensure the conductivity and durability of the circuit.
  6. ‌Lamination and cutting‌: After the electroplating is completed, the multi-layer circuit boards are laminated together to form a multi-layer PCB. Subsequently, the PCB boards are cut into specific sizes as needed.
  7. Inspection and testing‌: The manufactured PCB is inspected and tested to ensure that its functions and performance meet the design requirements. This may include visual inspection, functional testing and other methods.
  8. ‌Finished product assembly‌: The qualified PCBA board is assembled into the shell

‌What is the SMT process in PCBA?

‌1. Programming and adjusting the SMT machine‌: According to the information provided by the customer, program the coordinates of the location of the SMT components and perform the first piece check.

2. Printing solder paste‌: Use a screen printer to print the solder paste on the pads on the PCB board where the electronic components need to be soldered.

3. SPI inspection‌: Use a solder paste detector to detect the quality of solder paste printing to ensure that there are no defects.

4. SMT‌: Use a SMT machine to accurately install the electronic components SMD to the fixed position of the PCB.

‌5. High-temperature solder paste melting‌: The solder paste is melted at high temperature through a reflow oven to firmly solder the electronic components SMD and the PCB board together.

6. AOI inspection‌: Use an automatic optical inspection instrument to detect whether the PCBA components after welding have poor welding.

7. Visual inspection‌: Manual inspection checks the version of the PCBA, whether the direction of the components is correct, and the defects after welding.

8. Packaging‌: The qualified products are separated and packaged. The packaging materials used include anti-static bubble bags, static cotton, blister trays, etc.

PCB Assembly manufacturer High Quality & Fast Delivery

Best Technology is a PCB assembly manufacturer in Asia, who specializes in printed circuit board assembly (PCBA) and manufacturing. We have our own PCBA factory with 8 SMT lines, each line equipped with full-automated manufacturing and testing machine. In our PCBA factory, you can see dual-online AOI, SPI, X-RAY, nitrogen reflow oevn and so on. We are certified by ISO9001, ISO13485, and IATF16949, ensuring the highest quality standards in every PCB project.

Full turnkey service from pcb design, pcb manufacturing, component sourcing, pcb assembly, pcb duplicating in a very short time.

We source all the parts directly from the manufacturers or from authorized distributors such as Digikey, Mouser,Future,TTI,Avnet and Arrow to avoid counterfeit parts.

We also warehouse a significant inventory of common parts.If we cannot source a specific component, our engineers will make recommendations for fair-price alternatives.

What is pcba test

‌‌PCBA testing‌ is the process of testing the electrical conductivity and input-output values ​​of the PCBA circuit board with mounted electronic components to ensure that all the installed circuit boards are completely consistent with the various specifications and parameters of the design. Through strict testing, the performance and reliability of the PCBA board can be improved, customer trust can be won, and cooperation between enterprises and customers can be promoted.

PCBA testing includes various test forms, such as ICT testing (internal circuit testing), FCT testing (functional testing), fatigue testing, extreme environment testing and aging testing.
ICT testing tests the characteristics of devices and circuit networks by applying test probes to the test points on the PCB.

FCT testing is mainly used to test the electronic and electrical functional aspects of the PCBA board, and is tested under the condition of simulating the actual operating state of the PCBA board. Fatigue testing performs high-frequency and long-term operations by sampling to observe whether failures occur.

Extreme environment testing places the PCBA board in harsh and extreme environments, such as high temperature, severe cold, and falling, to infer the reliability of the PCBA board. Aging testing is to power on the PCBA board and electronic products for a long time to observe whether any failures occur.

What is a pcba number

A combination of letters and numbers used to uniquely identify and track each electronic component on a circuit board. These numbers are often called component numbers, part numbers, or reference designators.

On PCBA boards, the format and meaning of these numbers may vary depending on the manufacturer and designer, but generally follow certain rules.

For example, common numbers are R107, C118, Q102, D202, etc., where:
The first letter usually identifies the type of device, such as: R for resistors, C for capacitors, D for diodes, Q for transistors, etc.
The subsequent digital part may indicate the circuit function number (such as “1” may indicate the motherboard circuit, “2” may indicate the power supply circuit, etc.) and the serial number of the device on the circuit board.

FAQ About PCBA

hat does poor welding include and what kind of faults will it cause?
Poor welding is manifested as incomplete solder joints, cold solder joints, etc., which lead to reduced conductivity of the circuit board or circuit failure. Solutions include optimizing soldering parameters, ensuring pad cleanliness, adjusting soldering energy, and increasing soldering temperature or extending soldering time.

What causes component misalignment?
It is caused by inaccurate positioning of components during the soldering process, affecting circuit connection and product function. Solutions include implementing precise visual inspection and automatic inspection to ensure that components are placed correctly and rework and repair.

What do short circuits and open circuits mean?
Short circuits and open circuits: caused by poor insulation or fracture between adjacent solder joints on the circuit board or between solder joints and lines, which may cause abnormal current flow or circuit interruption. Solutions include ensuring that solder paste is evenly applied, components are correctly placed, and adjusting soldering parameters to avoid excessive soldering temperature and pressure.

What causes solder cracking?
Solder cracking: cracking occurs during use or after a certain environmental stress, usually due to excessively high temperatures, long soldering time, or improper selection of soldering materials during the soldering process. Solutions include optimizing soldering parameters, ensuring proper soldering temperature and time, and selecting appropriate soldering materials.

Why electrostatic discharge?
‌Electrostatic discharge (ESD) damage: Sensitive electronic components can be damaged by ESD. Solutions include implementing ESD control measures in the production environment, such as using ESD gloves and anti-static workbenches.
Does voltage instability affect PCBA performance?
‌Power supply issues: Power supply stability issues can affect PCBA performance. Solutions include implementing power electronics technology and voltage regulators to ensure stable power supply.

what does pcba stand for

PCBA stands for Printed Circuit Board Assembly. Other synonyms of PCBA include “PCB Assembly”, “Populated PCB” and “Board Assembly”. These terms are widely used in the electronics industry to describe the finished or semi-finished state of a circuit board after component placement and soldering.‌

what is a pcba board

PCBA board, full name Printed Circuit Board Assembly, Chinese name is printed circuit board assembly, refers to the installation and welding of components on the completed printed circuit board to form a circuit board that can be used directly.

The production process of PCBA board mainly includes three steps: component mounting, welding and testing. First, the obtained components are accurately positioned and mounted on the PCB board according to the design requirements, and then the components are firmly fixed on the PCB board by welding, and the circuit is ensured to be unobstructed. Finally, the circuit is tested to verify whether it is working properly. The whole process requires a high degree of technology and precision to ensure the quality of PCBA board.

You may also like

What is an amplifier board? Its functions and types
星期三, 4 9 月, 2024

A power amplifier board is a circuit board specially designed to enhance audio signals. It is the core component of the audio system, which can enhance weak signals to a level that can effectively power speakers or other output devices. In modern audio equipment, the existence of power amplifier boards is indispensable.

What is an amplifier board?

The amplifier board is an important part of the amplifier, which is mainly responsible for the power amplification function, that is, converting low-level signals into high-level signals to drive the speakers to produce loud and clear sounds.

The amplifier board is usually composed of a power amplifier device and a speaker protection device, and its effect directly affects the performance of the entire amplifier.

The difference between the amplifier board and the amplifier is that the amplifier usually contains a preamplifier, a post-amplifier and an output stage, etc., and is a complete unit suitable for larger occasions such as KTV rooms and theaters.

The amplifier board mainly contains a post-amplifier and an output stage, lacks a preamplifier, is smaller in size, has lower power, and is more suitable for personal use, such as home theaters. In addition, the price of the amplifier is higher, while the price of the amplifier board is relatively cheap.

What does an amplifier board do?

The main function of the amplifier board is to amplify the sound signal and increase the power of the audio signal, so that the sound is clearer and louder. ‌

What is an amplifier board? Its functions and types

The amplifier board plays a vital role in audio equipment. It is mainly responsible for converting the power of audio signals so that higher sound output can be produced in a relatively small space.

In the audio circuit, the role of the amplifier board is particularly obvious. It works together with components such as preamplifiers, control amplifiers, power amplifiers and speakers to amplify the input audio signals through the amplifier board and convert them into clear and high-fidelity sounds, achieving high-quality performance of the audio.

In addition, the use of amplifier boards can make audio equipment more powerful, not only providing more beautiful sound effects, but also better protecting the stability of the audio equipment itself. Therefore, amplifier boards are widely used as important components in the production of audio equipment.

In summary, the amplifier board amplifies the power of the audio signal, allowing the audio equipment to output higher quality and louder sound, thereby enhancing the listening experience. Whether it is a professional audio or a home theater system, the amplifier board is an indispensable component‌.

How does an amplifier board work?

The working principle of the amplifier board is mainly based on the principles of electronic engineering and physics. Through the combination of amplifiers and power supplies, the input signal is amplified and output to the speaker. ‌

The core component of the power amplifier board is the amplifier, which has many types, such as voltage amplifier, current amplifier, damping amplifier, etc. Each type of amplifier has different amplification effects and signal transmission methods.

When the input signal is transmitted to the power amplifier board through the amplifier, the energy supplied by the power supply makes the level of the output signal greater than the input signal level, thereby playing the role of amplifying the signal. In this process, the power supply provides energy to the amplifier in the form of direct current to control the waveform and frequency of the output signal.

From a technical point of view, the power amplifier board is like a current modulator, which converts alternating current into direct current, and then is controlled by the sound signal played by the sound source to transmit currents of different sizes to the speakers at different frequencies, so that the speakers emit sounds of corresponding sizes and frequencies.

The working modes of the power amplifier include Class A power amplifier, Class B power amplifier and Class AB power amplifier, each type has its own characteristics and applicable scenarios.

In short, the working principle of the power amplifier board involves the interaction of multiple physical and electronic engineering principles. Through carefully designed circuits and components, the input audio signal is amplified and output to the speaker, thereby producing the sound we hear‌.

What are the different types of amplifier boards?

There are four main types of amplifier boards: Class A, Class B, Class AB, and Class D. ‌

1. Class A amplifier:

Class A amplifiers are amplifiers in which no power output element of the amplifier will experience current cutoff (i.e. stop output) during the entire cycle of the signal. This type of amplifier generates high heat when working and has very low efficiency, but the inherent advantage is that there is no crossover distortion.

Class A amplifiers have the best linearity and almost no distortion, so they can provide high-quality audio amplification with pure and realistic sound quality. However, due to low efficiency, Class A amplifiers have high body temperatures and require good heat dissipation design.

2. Class B amplifiers:

Class B amplifiers work completely differently from Class A amplifiers. In Class B amplifiers, the positive and negative channels of the transistors are usually in a closed state unless there is a signal input. This means that when there is no signal input, the output transistors do not conduct electricity and consume no power.

When there is a signal, each pair of output tubes amplifies half of the waveform, and takes turns to complete a full-wave amplification, thus generating crossover distortion. The advantage of Class B amplifiers is high efficiency, but the sound begins to distort when the signal is very low, and the sound becomes rough.

3. Class AB amplifiers:

Class AB amplifiers combine the characteristics of Class A and Class B. They use Class A when the signal is small, and gradually transition to Class B working mode as the signal increases. This method aims to balance the high fidelity of Class A with the high efficiency of Class B, reduce crossover distortion, and improve efficiency.

4. Class D amplifiers:

Class D amplifiers are high-efficiency amplifiers that achieve high-efficiency conversion through high-frequency pulse width modulation technology. The design of Class D amplifiers makes it consume almost no power when there is no signal input, and when there is a signal input, it amplifies the signal through high-frequency switching, thereby achieving high-efficiency energy conversion.

The advantage of Class D amplifiers is extremely high efficiency, but the design is relatively complex and requires precise control circuits to ensure sound quality.

In summary, different types of amplifiers have their own characteristics in terms of efficiency, sound quality, application scenarios, etc. Choosing the right type of amplifier depends on specific application requirements and personal preferences.

What are the disadvantages of amplifier board?

The disadvantages of amplifier boards mainly include high power consumption, high cost, high distortion, severe digital flavor, and cold sound. ‌

1. High power consumption and high cost:

Due to its working mode, Class A amplifiers have the problems of high power consumption and high cost. This type of amplifier performs well in bass performance and distortion control, but the corresponding energy consumption and cost investment are also high.

2. High distortion:

Digital amplifiers may generate noise and nonlinear distortion during digital conversion, which will affect the sound quality. In addition, digital amplifiers have high requirements for power supply noise processing, and the cost of the whole machine is relatively high, especially compared with traditional analog amplifiers.

3. Severe digital flavor and cold sound:

Digital amplifiers may be considered to have a serious digital flavor in sound quality, and the sound is cold and not warm enough, which may not meet the hearing preferences of all users.

In summary, different types of power amplifier boards have their own advantages and disadvantages, and the choice needs to be weighed according to personal needs and preferences.

What is the difference between a power amplifier and an amplifier board?

A power amplifier is an electronic device designed to amplify the power of an input signal to drive a load (such as a speaker, antenna, etc.). It is a key component in audio systems, radio communication equipment, etc.

What is an amplifier board? Its functions and types

A power amplifier board generally refers to a circuit board or module used to assemble or apply a power amplifier. It contains all the components and circuit designs required for a power amplifier. An amplifier board can be a stand-alone circuit board for integration into a larger system or for DIY projects.

Conclusion:

Amplifier boards are an indispensable component in modern audio systems, providing the necessary amplification to ensure clear and powerful sound. Whether you are looking for high efficiency, excellent sound quality, or both, there is an amplifier board that suits your needs.

You may also like

What is a Bluetooth PCB board? How does it work?
星期三, 4 9 月, 2024

Bluetooth technology has become a major component of modern electronics, enabling wireless communication between devices. At the heart of this technology is the Bluetooth PCB board (printed circuit board), which is a key component that promotes the functionality and efficiency of Bluetooth devices.

The magic of Bluetooth is everywhere in electronic products such as mobile phones and computers, and it is all made possible by the functionality of Bluetooth PCB boards.

What is Bluetooth PCB board?

A Bluetooth PCB board (printed circuit board) is a specially designed circuit board that integrates the components required for Bluetooth communication into electronic devices. It is the backbone for wireless transmission and reception of data between devices, allowing devices such as smartphones, headphones, and smart home devices to connect without cables.

What is a Bluetooth PCB board? How does it work?

PCBs are filled with various components, including Bluetooth chips, antennas, resistors, capacitors, and other components necessary for the Bluetooth functionality of devices. The layout of these components is carefully planned to optimize signal strength, reduce interference, and ensure efficient power consumption.

What does a Bluetooth PCB board do?

The Bluetooth PCB board plays a vital role in Bluetooth devices. Its main roles include providing reliable electrical connections, enabling compact layout of components, reducing production costs and improving production efficiency, and facilitating repairs and upgrades.

Essentially, a Bluetooth PCB board enables devices to communicate wirelessly over short distances. The PCB provides a platform where all the necessary electronic components are interconnected, allowing them to work seamlessly together.

The main role of a Bluetooth PCB is to manage the transmission and reception of data, ensuring that information is accurately sent and received between devices. It needs to filter and process signals to maintain a clear, stable connection, and also protect the data being transmitted to prevent unauthorized access.

How does a Bluetooth PCB board work?

The working principle of a Bluetooth PCB board mainly relies on its integrated main control chip, audio power amplifier chip, RF antenna and other components, as well as the layout and wiring principles in PCB design to ensure stable wireless communication and high-quality audio output.

What is a Bluetooth PCB board? How does it work?

When two Bluetooth-enabled devices are within range, they establish a connection through a process called “pairing”. This involves exchanging unique identifiers and agreeing on a communication protocol. After pairing, the devices can send and receive data over the Bluetooth connection, which is assisted by the components of the PCB.

The Bluetooth PCB board plays a key role in this process, managing RF signals, filtering out noise, and ensuring that data is accurately transmitted and received. The design of the board is critical to minimizing interference and maximizing the range and reliability of Bluetooth connections.

What is the technical principle of Bluetooth?

Bluetooth is a form of communication that uses radio frequencies to connect different devices. It can operate at 2.4 GHz, similar to other forms of wireless communication such as Wi-Fi.

A master Bluetooth device can remotely connect to 7 other Bluetooth devices, paired devices exchange information with the master Bluetooth device in a serial manner, and the interaction between paired devices can be carried out through the master Bluetooth device, which acts as a facilitator.

The Bluetooth frequency range is 1 cm to 100 meters, and each connection requires device approval using a unique code. When there is no active information exchange, Bluetooth devices can remain idle, thereby reducing energy consumption.

The Bluetooth protocol is designed to be energy-efficient and is ideal for battery-powered devices. It achieves energy conservation through low-power modes and adaptive power management techniques that adjust power output based on the distance between connected devices.

Bluetooth circuit boards are the main force driving wireless headphones, remote controls, wireless speakers to the Internet of Things (IoT) applications. They are double-layer PCBs, but only one board.

What is the principle of Bluetooth PCB board?

The working principle of Bluetooth PCB board is simple. There is an antenna on the Bluetooth PCB that receives the signal from the Bluetooth device. The information is processed inside the board and sent to the output.

One of the key principles behind Bluetooth PCB design is impedance matching. Impedance matching ensures that the electrical signal transmitted through the PCB is transmitted with minimal reflection or loss. This is especially important for antennas, which must be carefully matched to the rest of the circuit to maximize signal strength and range.

Another important principle is electromagnetic compatibility (EMC). The PCB must be designed to minimize electromagnetic interference (EMI) that can interfere with Bluetooth signals. This involves careful placement of components, shielding, and the use of specific materials that reduce EMI.

Depending on the application of the Bluetooth device, different Bluetooth profiles can be used to facilitate communication between devices. For example, the Audio/Video Remote Control Profile (AVRCP) is used to communicate with audio video equipment and can be used for remote controls for hi-fi equipment and TVs.

What are the types of applications for Bluetooth PCB board?

The wide range of applications for Bluetooth PCB board reflects the versatility and convenience of Bluetooth technology.

1. Consumer electronics: Bluetooth PCBs are found in smartphones, tablets, laptops, headphones, and speakers, enabling wireless audio streaming and data transfer.

What is a Bluetooth PCB board? How does it work?

2. Smart home devices: Bluetooth PCBs power smart home devices such as thermostats, lights, door locks, and security cameras, allowing them to be wirelessly controlled from a central hub or smartphone.

3. Wearable devices: Fitness trackers, smart watches, and health monitors rely on Bluetooth PCBs to sync data with smartphones and other devices.

4. Automotive systems: Bluetooth PCBs are used in automotive infotainment systems, enabling hands-free calling, music streaming, and integration with smartphones.

5. Medical devices: Bluetooth PCBs are increasingly used for remote monitoring and data collection in medical devices, such as blood glucose monitors and heart rate sensors.

6. Industrial automation: Bluetooth PCBs are used in a variety of industrial applications, including wireless sensors, control systems, and machine-to-machine (M2M) communications.

Conclusion:

Bluetooth PCB boards are the backbone behind wireless connectivity, which has become a cornerstone of modern life. These boards are designed with complexity to ensure that devices can communicate seamlessly and efficiently. From consumer electronics to industrial applications, Bluetooth PCB plays a key role in achieving wireless communications for the Internet. BEST Technology has extensive experience in manufacturing PCB boards of various functions, and its professional team can also provide you with high-quality design and services.

You may also like

What file type is used for PCB schematic drawings?
星期二, 3 9 月, 2024

PCB printed circuit boards are essential to achieving the functionality of electrical devices, but before the final board can be manufactured, a carefully drawn schematic is essential. The PCB schematic is the blueprint that guides the actual design and manufacture of the circuit board. The schematic and Gerber files are key elements in the PCB manufacturing process, and each plays a different role.

What is the schematic file for PCB?

The schematic file is the foundation of any PCB design. It represents the logical connections and relationships between different components in the circuit. Think of it as a map showing how each component, such as resistors, capacitors, and microcontrollers, is connected to form a functional circuit.

What file type is used for PCB schematic drawings?

When creating a PCB, the schematic file is the first step. It is used to document the design and is essential to ensure that the final product functions as expected. Engineers use specialized software to create these schematic files, which can then be converted into the layout of the physical PCB.

What is PCB CAD file?

‌PCB CAD files‌ are files directly output or saved by EDA software for PCB design. These files contain information about each layer of the PCB, network connection information, component information, etc. They are very comprehensive and contain almost all the information of the circuit board.

What file type is used for PCB schematic drawings?

This format is mainly used for the storage and exchange of circuit board design, and contains information such as the layout, connection, pad, and drilling of each component on the circuit board.

In circuit board design, designers use circuit board design software to draw circuit schematics, layout, connection, component placement, etc., and finally generate a PCB file, and then load the file onto the circuit board to realize the production of the circuit board.

In addition, PCB CAD files play an important role in the offline programming of SMT placement machines. Offline programming refers to the work of compiling SMT placement programs on a computer using offline programming software and PCB CAD design files.

This programming method can save online programming time, thereby reducing the downtime of the entire PCBA processing and improving the utilization of equipment. Offline programming software is often used in automated production processes to ensure efficient and accurate completion of the placement of electronic components.

What files are needed to make a PCB?

Creating a PCB is a multi-step process involving multiple different files, each with its own unique purpose.

1. Schematic file (.sch, .dsn): represents the logical connection of the circuit and is the blueprint of the entire PCB design process.

2. Netlist file (.net, .xml): generated based on the schematic, lists all components and their connections.

3. Gerber file (.gbr, .pho): Gerber file is the most important file for manufacturing PCB. Define each layer of the PCB, including copper wire, solder mask and silk screen printing layer, each layer of the PCB requires its own Gerber file.

4. Drill file (.drill, .drl): specifies the location of the holes drilled on the PCB. It includes information on the size and location of each hole.

5. Bill of Materials (BOM, .bom, .csv): BOM lists all the components required to assemble the PCB. Including part number, quantity and other details required for procurement.

6. Pick and place file (.txt, .csv): used in the assembly process to specify the precise location of each component on the circuit board.

What is the file type for circuit schematic?

The file type for a circuit schematic can vary depending on the software used to create it.

1. .SCH: This is the most common file extension for schematic files.

2. .DSN: This is another standard for schematic files.

3. .PDF: Although PDF is not a design file, it is often used to share schematics for review. It provides a non-editable version of the schematic that can be easily viewed.

4. .XML: Some tools export schematics as XML files for compatibility with other software. This format is useful for exchanging data between different design tools.

5. .PNG/.JPG: Image formats such as PNG or JPG are sometimes used to share simple schematics. These are not editable, but can provide a quick way to visualize the circuit.

What does a Gerber file contain?

Gerber is actually a description file that focuses more on PCB manufacturing and production. It should be said that it was originally designed for plotters. Therefore, the content of Gerber basically includes the information required for PCB manufacturing, such as copper foil circuit layer, solder mask layer, silk screen layer, legend layer, drill layer, etc. Even solder paste printing layer, image recognition layer, annotations and production notes can be included in it in layers.

What file type is used for PCB schematic drawings?

Advantages and Disadvantages of Gerber Files

Gerber files are not suitable for being used as a storage file format for current PCB design. Because the Gerber file format does not contain the connection information between the various circuit layers of the PCB.

If you look closely at the Gerber file structure, you will find that each layer is a small file, which means that the layers of Gerber are independent and unrelated to each other. They are like independent drawings. This feature had little impact on wiring engineers when PCBs were only single-sided or double-sided in the early days, but it is very disadvantageous in design, operation, debugging and verification for the increasingly complex multi-layer PCBs. Therefore, almost no one uses Gerber files as the file format for PCB design.

Because the amount of information in Gerber files is small, its file size is much smaller than other design files drawn by EDA or CAD software. In addition, its format is more irreversible in design and protects the original design. In addition, its vector image layered format is still very suitable for use in PCB manufacturing. Today, PCB production generally follows this layer to divide the process into different stages for production, so Gerber files are still widely used in PCB production.

Therefore, some design companies with high confidentiality requirements will convert the design files into Gerber before sending them to the PCB factory for production, trying to keep confidentiality.

Conclusion:

For anyone working in the electronics industry, it is essential to understand the various file types used in PCB design. From the initial schematic file to the final Gerber file, every step in the design process relies on accurate and compatible files. BEST Technology has a professional PCB design team with rich experience in different PCB designs. We can solve all your PCB design problems.

You may also like

What is an LED circuit board?
星期二, 3 9 月, 2024

In today’s fast-growing electronics industry, LED (light-emitting diode) technology has become a game-changer in lighting and display applications. LED PCB (printed circuit board) is essential for effectively powering and controlling LEDs. It plays a key role in ensuring the efficiency, lifespan and performance of LED lighting systems.

As the demand for energy-efficient lighting solutions continues to increase, understanding the complexity of LED light PCB design has become critical for engineers, designers and manufacturers. These circuit boards require special manufacturing steps in addition to design guidelines.

What is led light circuit board?

LED light circuit board is the abbreviation of printed circuit board, which is mainly used to carry and connect electronic components of LED lamps. ‌LED light circuit board is usually made of aluminum substrate and FR-4 fiberglass circuit board, where the LED aluminum substrate is printed on the aluminum plane with good thermal conductivity, and then the electronic components are soldered on it. ‌This design helps to improve the heat dissipation performance and stability of LED lamps, and ensure that the LED lamps can work stably for a long time.

What is an LED circuit board? How to make it?

The main function of LED light circuit board is to provide power to LED lamp beads and control the brightness and color of its LED lamp beads. In order to light up the LED lamp beads, an LED driving circuit is required, which includes constant voltage driving, constant current driving, PWM driving and other methods, which are usually integrated on the small circuit board of the LED lamp.

In addition, the design and manufacture of the LED lamp circuit board take into account the characteristics of LED, such as long life, high light efficiency, no radiation and low power consumption. Compared with traditional light sources, such as incandescent lamps and fluorescent lamps, LED lamps have significant advantages in efficiency, life and environmental protection.

How to make led light circuit board?

The process of making LED lamp circuit boards involves multiple steps, including welding, self-inspection, mutual inspection, cleaning, friction, wiring, etc.

Determine the direction of the lamp: the front side is facing up, and the side with the black rectangle is the negative end.

Determine the direction of the circuit board: the front side is facing up, and the end with two internal and external wiring ports is the upper left corner.

Welding: Carefully weld each solder joint to ensure fullness, cleanness, and no false soldering or leaking. ‌

What is an LED circuit board? How to make it?

Self-inspection: After completing the welding, first check whether there is a cold solder joint, leaking solder joint, etc. Use a multimeter to touch the positive and negative terminals of the circuit board to check whether the LED lights are on at the same time. ‌

Mutual inspection: After the self-inspection, it will be handed over to the person in charge for inspection. Only with the consent of the person in charge can it flow into the next process. ‌

Cleaning: Use 95% alcohol to scrub the circuit board to remove residues and keep the circuit board clean.

Friction: Use fine sandpaper (coarse sandpaper if necessary) to grind off the burrs on the edge of the circuit board so that the circuit board can be placed flatly in the fixing seat. ‌

Wiring: Use blue and black thin wires to connect the circuit board. The wiring point close to the inner circle is negative and connected to the black wire; the wiring point close to the outer circle is positive and connected to the red wire. ‌ Make sure the wires are connected from the back to the front. ‌

Self-check and mutual check: Check the wiring to ensure that each wire passes through the pad, the length of the wires on both sides of the pad that remain on the surface should be as short as possible, and the thin wires will not break or loosen when gently pulled. ‌‌

Through the above operations, the production of the LED lamp circuit board can be completed. ‌Each step is crucial, especially the welding and wiring parts. It is necessary to ensure the quality of the welding points and the correct connection of the wires to ensure the normal operation of the circuit board and the normal lighting of the LED lamp.

Why do you need a resistor with an LED?

When using LED, a resistor needs to be connected in series to control the current, prevent excessive current from damaging the LED, and ensure that the LED can emit light normally. ‌

LED is a semiconductor device that can directly convert electrical energy into light energy. Due to its special material properties, LED is very sensitive to current, and excessive or insufficient current may cause the LED to malfunction or be damaged.

Therefore, when the LED is connected to the power supply, a resistor is needed to limit the current to ensure that the LED can work stably and safely.

The main function of this resistor is voltage division and current limiting. It is used to adjust the current passing through the LED to prevent the LED from burning out due to excessive current, while also ensuring that the LED can emit light of appropriate brightness.

Specifically, when current passes through the LED, the resistor will produce a certain voltage drop, thereby reducing the voltage applied to both ends of the LED, thereby controlling the current passing through the LED.

What resistor to use with LED?

Use an LED resistor calculator to help determine the required resistor value. ‌

When using LEDs, in order to protect the LED and ensure its normal operation, it is usually necessary to limit the current by connecting an appropriate resistor in series. This is because each LED has a maximum current value, exceeding which may cause the LED to be damaged.

Using an LED resistor calculator can help you determine the required resistor value to ensure that the current does not exceed the maximum tolerance of the LED.

By entering the relevant parameters of the LED (such as the rated current and voltage), the calculator will automatically calculate the required resistor value to protect the LED from overcurrent damage.

This method is a common practice and is applicable to any situation where a number of LEDs are used in series. In this way, the safe operation of the LED can be ensured while avoiding damage caused by excessive current.‌

How to improve the heat dissipation performance of LED light circuit boards?

The key to improving the heat dissipation performance of LED light circuit boards is to optimize the heat dissipation path, use efficient heat dissipation materials, and adopt advanced heat dissipation technology.

Optimize the heat dissipation path:

Understanding the heat transfer path of the heat generated by LED components is the first step to improve heat dissipation performance. Heat moves from the LED components through the package wires to the circuit board, and then dissipates through the heat sink.

The heat dissipation efficiency can be effectively improved by using materials with good thermal conductivity, expanding the cross-sectional area of the path (such as using thick copper wire), and applying thermal lubricants to reduce the gaps in the connection parts.

Use efficient heat dissipation materials:

Metals such as copper and aluminum are often used to make heat sinks because of their good thermal conductivity. In addition, new materials such as graphene are also used to make heat sinks because of their excellent thermal conductivity. These materials can significantly improve heat dissipation efficiency. ‌

Adopting advanced heat dissipation technology:

Micro-groove group composite phase change integrated cooling technology is an advanced heat dissipation technology. It effectively removes the heat of high-power electronic devices by changing the closed-circulation cooling medium into a nano-scale water film and utilizing its strong evaporation ability and latent heat exchange ability.

As an excellent thermal conductive medium, thermal conductive silicone grease has excellent electrical insulation and thermal conductivity. It can penetrate into the tiny depressions on the metal surface, increase the contact area, and improve the efficiency of heat conduction from the LED chip to the aluminum substrate.

Are LED PCBs only used in lighting systems?

The application range of LED PCB (printed circuit board) is far more than lighting systems. In addition to lighting systems, LED PCB is also widely used in other fields. For example, LED lamps are one of the most common products using LED PCBs. Whether it is home lighting, commercial lighting or outdoor lighting, LED lamps occupy a large market share.

Compared with traditional incandescent lamps and energy-saving lamps, LED lamps have higher luminous efficiency, longer service life and lower energy consumption. They also have features such as dimming and color change, which can meet the needs of different scenarios. ‌

In addition, LED PCB is also used in LED display screens, LED backlight sources and automotive lighting. LED display screens provide high-definition and high-brightness display effects in large-scale events such as sports events, concerts, and exhibitions, bringing a shocking visual experience to the audience.

LED backlight sources have become the mainstream choice in electronic products such as LCD monitors, mobile phones, and tablet computers. Compared with traditional cold cathode fluorescent lamps, LED backlight sources have higher brightness, longer service life and lower energy consumption. At the same time, they can achieve local dimming, improve display effects and reduce energy consumption.‌

What is an LED circuit board? How to make it?

In the field of automotive lighting, with the advancement of automotive lighting technology, more and more cars are beginning to use LED lamps. Compared with traditional halogen and xenon lamps, LED car lights have higher brightness, longer service life, lower energy consumption, faster response speed and better heat dissipation performance, which improves driving safety. ‌

From this we can know that the application of LED PCB is not limited to lighting systems, but is widely used in many fields, including but not limited to lighting, display technology, backlight sources of electronic products, and automotive lighting. ‌

Conclusion:

Designing PCB for LED lights is a complex but critical task that requires careful consideration of various influencing factors, from the selection of manufacturing materials to the testing of thermal conductivity and the quality testing of finished products. Choosing Best Technology has expert design assistance and reliable manufacturing processes, which will allow you to obtain the best results for LED light PCB design. ‌

You may also like