pcb
Home > Blog

Archive for the ‘PCB Technology’ Category

NFC Antenna PCB Design, NFC Antenna PCB Prototype & Manufacturer
星期二, 11 3 月, 2025

What Is NFC Antenna PCB?

An NFC antenna PCB is a printed circuit board with an integrated antenna that facilitates wireless communication between NFC-enabled devices. The full name of NFC is near-field communication. The antenna consists of copper traces in a loop configuration, which generate an electromagnetic field at 13.56 MHz—the standard NFC operating frequency.

These antennas are widely used in smartphones, payment terminals, public transport systems, industrial automation, and medical applications. The size, shape, and material of the NFC antenna PCB significantly impact performance, affecting signal strength, data transfer efficiency, and overall range.

NFC Antenna PCB Design, NFC Antenna PCB Prototype & Manufacturer

What Is the Frequency Range of NFC Antenna PCB?

NFC technology operates within the high-frequency (HF) band at 13.56 MHz, which is globally standardized and regulated by ISO/IEC 14443, ISO/IEC 15693, and NFC Forum standards. But during the manufacturing, the frequency of NFC antenna PCB will be affected by some factors, we need to understand and avoid these factors:

  1. Antenna Size & Design: Larger antennas can enhance the range but may require more PCB space.
  2. Material Quality: Low-loss substrates help maintain signal integrity.
  3. Environmental Interference: Nearby metal objects can weaken NFC signals.
  4. Power Supply & Circuit Tuning: Proper tuning ensures stable operation at 13.56 MHz.

Since NFC operates at a fixed frequency, design and tuning adjustments are essential for achieving optimal performance.

What Does NFC Antenna PCB Do?

The primary function of an NFC antenna PCB is to enable short-range wireless communication between devices. It allows for fast, secure, and contactless data transfer, making it indispensable for applications like mobile payments, authentication, and access control. Let’s see how it works:

  • Signal Transmission: An NFC reader generates a magnetic field at 13.56 MHz, which activates passive NFC tags or interacts with other NFC-enabled devices.
  • Magnetic Coupling: When a compatible device enters the field, energy is transferred between the reader and the target device through inductive coupling.
  • Data Exchange: Once connected, the devices can exchange information, process transactions, or verify identity.
What Does NFC Antenna PCB Do?

What Is the Difference Between NFC Antenna Size and Range?

In general, the larger your antenna size, the longer the reading distance. Similarly a smaller antenna will give you a shorter read range. However, bigger isn’t always better, as factors like impedance matching and power output also play a role. It’s best to attempt to match the tag and the reader antenna geometries for maximum efficiency.

Antenna SizeRangeConsiderations
Small (10–20 mm)Short (1–2 cm)Used in compact devices like smartphones & wearables
Medium (20–50 mm)Moderate (3–5 cm)Common in payment terminals, industrial scanners
Large (50–100 mm)Longer (5–10 cm)Found in access control & long-range NFC readers
(Comparing Antenna Size & Range)

A well-balanced antenna design ensures optimal performance while minimizing power loss. At Best Technology, we have experienced engineering team can offer you a best NFC antenna PCB solution, if you have some questions or challenges during design phrase, be sure to contact us at sales@bestpcbs.com.

How Long Is NFC Antenna Cable?

A typical NFC antenna cable is usually around 75mm long, although this can vary depending on the specific antenna design and manufacturer; many commercially available NFC antennas come with a cable length explicitly stated as 75mm. Longer cables may experience higher resistance and energy dissipation, requiring careful impedance matching for efficient signal transfer.

  • Short Cables (50–100 mm): Found in smartphones, smart cards, and wearable devices to minimize resistance.
  • Medium-Length Cables (100–300 mm): Used in POS terminals, smart locks, and kiosks for flexibility.
  • Long Cables (300+ mm): Used in industrial applications, often requiring shielding to prevent signal loss.

Where Is the NFC Antenna on My Phone?

Nowadays, most smartphones have the NFC antenna integrated into the mainboard, it is always located on the back panel, usually near the top or center. In this way, we can ensure the optimal contactless transactions with payment terminals and other NFC devices. If you want to locate the NFC antenna on your phone, try to use below methods:

1. Check the phone’s manual for NFC placement details, it always show where the NFC antenna and how to use it.

2. Look for the NFC logo on the back of the phone.

3. Use an NFC-enabled card—move it around the back of the phone until it responds.

What Is the Impedance of NFC Antenna PCB?

The impedance of an NFC antenna PCB typically ranges between 50ohm and 200ohm, with 50ohm being the most common standard. Since NFC operates at 13.56 MHz, impedance matching ensures that the maximum amount of power is transmitted between the antenna and the NFC controller. Poor impedance matching can lead to signal reflection, power loss, and reduced communication range. Factors affecting NFC antenna PCB impedance including:

  • Antenna size and shape: The number of turns and the loop configuration affect inductance and resistance.
  • Substrate material: Different PCB materials have varying dielectric constants, impacting impedance.
  • Trace width and spacing: Wider traces lower resistance, while spacing affects mutual inductance.
  • Environmental factors: Nearby metals and circuit components can alter the effective impedance.

How Do I Check My Antenna Impedance?

To measure NFC antenna PCB impedance, use specialized RF measurement tools such as a Vector Network Analyzer (VNA) or an impedance bridge. Let’s take VNA for example, here is a step-by-step process to measure antenna impedance:

1. Connect the Antenna to a VNA: Attach the antenna’s feedline to the VNA using a coaxial cable with known impedance.

2. Perform S11 Parameter Measurement: The S11 reflection coefficient indicates how much energy is reflected back from the antenna. A lower value (closer to 0 dB) means better impedance matching.

3. Analyze the Smith Chart: The Smith chart helps visualize impedance variations and determine required adjustments.

4. Use a Matching Circuit: If impedance is off, introduce capacitors or inductors to fine-tune the circuit.

5. Verify with Load Testing: Apply an NFC reader and test real-world performance to confirm effective impedance matching.

Alternative Methods:

  • Impedance Bridge: This measures resistance and reactance separately, providing a simple yet effective impedance estimation.
  • Oscilloscope & Signal Generator: While not as precise as a VNA, this setup can provide insights into impedance variations under different frequencies.

NFC PCB Antenna Design Guide

Designing an NFC PCB antenna requires careful consideration of parameters like inductance, impedance matching, material selection, and trace layout. The goal is to optimize signal strength, communication range, and energy efficiency at the 13.56 MHz operating frequency. A well-designed antenna ensures stable and reliable NFC performance in various applications, from contactless payments to IoT connectivity.

NFC PCB Antenna Design Guide

1. Selecting the Right Substrate Material

The PCB material plays a crucial role in NFC antenna performance. Since NFC operates at low frequencies, FR4 is a common choice due to its cost-effectiveness and availability. However, its dielectric constant (Dk) varies, which can affect impedance, higher Dk values lead to higher signal attenuation. For better performance, materials with low loss tangents, such as Rogers laminates, can help maintain signal integrity.

2. Determining the Antenna Shape and Size

The most common NFC antenna shapes are listing as below, you can choose one according to your specific end-applications.

  • Rectangular: Common for mobile and industrial applications.
  • Circular: Used in smart cards and compact devices.
  • Custom: Designed for unique applications where space constraints exist.

Key considerations for antenna size:

  • Larger antennas offer better coupling and longer range.
  • Smaller antennas are suitable for compact devices but require careful tuning.

Number of turns in the coil affects inductance—more turns increase inductance but may reduce efficiency.

3. Calculating Inductance and Matching Circuit

For optimal NFC performance, the antenna must have the right inductance to match the NFC controller’s impedance. The standard inductance for NFC antennas ranges from 1.5 µH to 3.5 µH, depending on the application. The inductance (L) of a loop antenna can be estimated using below formula:

NFC PCB Antenna Design Guide

Where:

  • μ0 is the permeability of free space
  • N is the number of turns
  • A is the loop area
  • l is the total length of the conductor

If the inductance is too high or too low, adjustments can be made by:

  • Changing the number of turns in the coil.
  • Modifying the trace width and spacing.
  • Adding a matching network with capacitors to fine-tune resonance.

4. Designing the Trace Layout

The layout of the antenna traces impacts signal transmission and efficiency. Best practices for NFC PCB antenna traces:

✔ Use smooth curves instead of sharp angles to prevent signal distortion.

✔ Keep trace width uniform to maintain consistent inductance.

✔ Ensure even spacing between turns to minimize interference.

✔ Avoid placing components near the antenna to prevent detuning.

5. Shielding and Noise Reduction

NFC antennas are susceptible to EMI from nearby components or metal objects. To minimize noise:

✔ Use ground planes carefully to avoid affecting inductance.

✔ Place ferrite sheets between the antenna and metal surfaces.

✔ Reduce proximity to high-frequency circuits that can interfere with NFC signals.

NFC Antenna PCB Manufacturing Considerations

1. Material Selection for NFC Antenna PCBs

Choosing the right material is critical for signal integrity, durability, and efficiency in NFC applications. FR4 is the most commonly used material due to its low cost and easy availability, but for high-performance applications, materials like Rogers laminates or flexible polyimide are preferred.

✔ FR4: Suitable for standard applications but may have variations in dielectric properties.

✔ Rogers (RO4000 series): Offers low dielectric loss for better signal transmission.

✔ Polyimide (Flexible PCBs): Ideal for wearable NFC devices and compact electronics.

2. Antenna Etching and Trace Precision

Since NFC signals operate at 13.56 MHz, the antenna’s trace geometry and precision significantly impact performance.

✔ Consistent trace width: Prevents impedance mismatches.

✔ Smooth copper edges: Avoids signal reflection and interference.

✔ High etching accuracy: Ensures uniform current distribution across the antenna.

Manufacturing tip: Using laser etching or fine-line PCB processes ensures the highest accuracy in trace definition.

3. Impedance Control & Matching Network

For optimal energy transfer, NFC antennas require precise impedance matching. Manufacturers must control:

Copper thickness: Variations affect antenna inductance and resistance.

Dielectric thickness: Thicker layers alter capacitance and tuning properties.

PCB stack-up consistency: Multi-layer designs should ensure even distribution of materials.

4. Surface Finish Selection

The surface finish affects antenna conductivity and longevity. Common options include:

✔ ENIG (Electroless Nickel Immersion Gold): Corrosion-resistant with good conductivity.

✔ OSP (Organic Solderability Preservative): Cost-effective but may degrade over time.

✔ Hard Gold: Suitable for wear-resistant applications like contactless card readers.

5. Panelization & Production Efficiency

For large-scale manufacturing, panelization techniques optimize material usage and production time.

✔ Mouse-bite perforations allow easy breakaway of individual NFC antennas.

✔ V-scoring minimizes stress on the PCB structure during separation.

✔ Laser cutting (for flex PCBs) ensures precision without damaging the antenna traces.

6. Environmental Protection & Durability

Since NFC antennas are used in wearables, smart cards, and industrial applications, they must withstand harsh environments.

✔ Conformal coatings: Protect against moisture and dust.

✔ Encapsulation: Seals antennas in resin or plastic casings for durability.

✔ Flexible PCB lamination: Enhances bend resistance for wearable electronics.

Why Choose Best Technology for NFC Antenna PCBs?

✔ Expertise in NFC PCB Design & Manufacturing:

Our engineers specialize in custom NFC antenna designs, ensuring optimal performance and efficiency.

✔ Advanced Manufacturing Techniques:

We use high-precision etching, impedance control, and laser cutting to produce NFC antennas with minimal signal loss.

✔ High-Quality Materials:

From standard FR4 to flexible polyimide and Rogers laminates, we offer the best material solutions based on your application needs.

✔ Strict Quality Control:

Every PCB undergoes rigorous testing, including impedance measurements, RF performance analysis, and durability testing.

✔ Flexible Prototyping & Mass Production:

Whether you need a small batch for R&D or high-volume production, we provide scalable solutions with competitive pricing.

✔ Custom Solutions for Various Applications:

We manufacture NFC antenna PCBs for:

  • Smartphones & Wearables
  • Access Control & Security Systems
  • IoT Devices & Smart Cards
  • Medical Equipment & Industrial Applications

At Best Technology, we prioritize precision, reliability, and innovation to deliver NFC antenna PCBs that exceed industry standards.

For custom NFC antenna PCB solutions, contact Best Technology today and experience world-class manufacturing expertise!

You may also like

WiFi Antenna PCB Design, Wi-Fi Antenna PCB Manufacturer
星期一, 10 3 月, 2025

What is a Wi-Fi Antenna PCB?

A Wi-Fi antenna PCB is a specialized printed circuit board used in the design and functionality of wireless communication devices. It serves as the base on which a Wi-Fi antenna is integrated, enabling seamless wireless communication. These PCBs are crucial components for devices that rely on Wi-Fi signals, from smartphones to routers. The antenna is embedded into the PCB, ensuring optimal signal transmission and reception. Without a high-quality antenna PCB, the Wi-Fi signal may experience disruptions, leading to slower connections or weaker signals.

WiFi Antenna PCB Design, Wi-Fi Antenna PCB Manufacturer

Types of Wi-Fi Antenna PCBs

Wi-Fi antenna PCBs come in different types, each tailored to specific needs and designs. Here are some of the most common types:

  • Monopole Antenna PCBs

A monopole antenna is a simple design with one main conductor, typically a straight wire. This type is cost-effective and efficient for most consumer-grade devices. It is often used in compact devices where space is limited.

  • Dipole Antenna PCBs

The dipole antenna consists of two conductors and is often used for higher-performance applications. It offers better radiation patterns and is ideal for devices that require broader coverage.

  • Patch Antenna PCBs

A patch antenna is a popular choice for Wi-Fi applications due to its compact design and high efficiency. It can be integrated into devices with minimal space and offers good directional performance.

  • Helical Antenna PCBs

Helical antennas are used when a circular or omnidirectional signal is required. These are highly effective in applications like Wi-Fi routers or mobile devices that need signals in all directions.

  • Array Antenna PCBs

Arrays combine multiple antennas to improve signal strength and coverage. They are often used in complex communication systems where range and reliability are crucial.

Types of Wi-Fi Antenna PCBs

Advantages of Wi-Fi Antenna PCBs

Wifi PCB antenna is printed wires on the PCB board to achieve signal radiation and reception. Common PCB antenna designs include straight, F-shaped, serpentine or circular lines, and the length is usually a quarter wavelength to ensure the best signal transmission efficiency.

  • Cost effectiveness: PCB antennas are generally less costly as they do not need to be assembled separately and can be integrated directly on the motherboard, simplifying the production process and reducing costs.
  • Space efficiency: PCB antenna is built-in, takes up less space, suitable for space limited equipment, such as smart wearable devices and drones‌.
  • ‌Easy integration: PCB antenna can be printed directly on the circuit board, simplifying the assembly process, making the whole machine assembly more convenient.
  • ‌Stability: PCB antennas reduce external components, reduce the risk of damage, and are less susceptible to physical damage‌.
  • Wi-Fi Antenna PCB PCB antenna design can be optimized at the design stage to adapt to different design needs and shapes‌.

What is the Best Material for Wi-Fi Antenna?

The material used in the Wi-Fi antenna PCB plays a significant role in its performance. The best material for Wi-Fi antenna PCBs ensures low signal loss, high efficiency, and overall durability. Here are some materials commonly used for Wi-Fi antenna PCBs:

  • FR4

FR4 is one of the most common PCB materials. It offers a good balance between cost and performance. While it may not be ideal for high-frequency applications, it’s suitable for most consumer-grade devices.

  • Rogers RT/duroid

Rogers materials like RT/duroid are widely used for high-performance antenna designs. They provide excellent dielectric properties, making them ideal for high-frequency signals like Wi-Fi.

  • Ceramic PCBs

Ceramic-based PCBs are used in applications requiring extremely low loss and high thermal conductivity. They are suitable for high-frequency Wi-Fi applications.

  • Polyimide

This material is used in high-temperature environments due to its excellent thermal stability. Polyimide is often used for flexible PCBs in compact and portable Wi-Fi devices.

WiFi Antenna PCB Design, Wi-Fi Antenna PCB Manufacturer

Wi-Fi PCB Antenna Design Considerations

Designing a Wi-Fi PCB antenna requires careful planning to ensure optimal performance, minimal signal interference, and reliable wireless connectivity. Here are key factors to consider:

1. Antenna Selection and Structural Requirements

  • For optimal performance, prioritize the PIFA antenna (Planar Inverted-F Antenna) over standard chip antennas, as it offers higher success rates and better efficiency. Ensure the antenna length corresponds to a quarter of the free-space wavelength (e.g., approximately 30.6mm for 2.4GHz).
  • If using SMT chip antennas or FPC antennas, reserve the required pad size (e.g., 2×3mm) and maintain a copper-free clearance of at least 0.8mm around them. On-board PCB antennas are suitable for cost-sensitive applications, but meandered traces should be used to optimize space utilization.

2. Layout and Routing Guidelines

  • RF traces should maintain 50Ω impedance matching, preferably using microstrip lines, and avoid vias. A continuous ground plane should be placed beneath the RF trace.
  • The antenna must be kept away from metal objects (≥15mm) to prevent interference. Avoid metal-coated enclosures or fully sealed metal structures that could block signals.
  • The RF module should be positioned close to the antenna to shorten the transmission path while keeping a safe distance from high-speed signals (e.g., Class-D amplifiers and audio circuits).

3. Grounding and Clearance Design

  • A continuous ground plane beneath the antenna is required, ideally with a length equal to the antenna itself (e.g., 30.6mm for 2.4GHz). If space is limited, grounding through the bottom layer can be considered.
  • The antenna area must remain clear of components and other traces, with a copper-free clearance of at least 0.8mm around it.

4. Interference Mitigation

  • Metal structures (e.g., enclosures) should be properly grounded at multiple points to prevent poor grounding, which could lead to signal reflection and reduced efficiency.
  • Differential signal traces (e.g., audio signals) should be routed as parallel and equal-length pairs and kept away from RF areas.

5. Performance Optimization

  • Use simulation tools to fine-tune antenna parameters (e.g., height, meandered trace spacing) to ensure bandwidth and gain match Wi-Fi frequency requirements.
  • External antennas (e.g., dipole or FPC antennas) can improve gain but should be evaluated for installation space and enclosure material compatibility.

Wi-Fi PCB Antenna Applications

  • Smartphones and Tablets – These devices rely heavily on Wi-Fi antennas for high-speed internet access. Wi-Fi antenna PCBs ensure stable connectivity, even in crowded environments.
  • Routers and Modems – Wi-Fi routers and modems use high-performance antenna PCBs to provide strong, consistent signals throughout a home or office.
  • IoT Devices – As the Internet of Things (IoT) continues to grow, Wi-Fi antenna PCBs are integral to the communication capabilities of connected devices, including smart home products.
  • Wearable Devices – Many wearables like smartwatches require compact Wi-Fi antenna PCBs for wireless communication, ensuring a seamless user experience.
  • Consumer Electronics – Various consumer electronics, from TVs to game consoles, integrate Wi-Fi antenna PCBs for internet connectivity and streaming capabilities.

Turn-Key Wi-Fi Antenna PCB Manufacturer

Best Technology is a leading PCB manufacturer with over 18 years of experience in the industry. We specialize in designing and producing high-quality Wi-Fi antenna PCBs for various applications, including consumer electronics, IoT devices, and industrial communication systems. We offer turn-key manufacturer handles the entire process, from design to assembly, offering a seamless experience.

With a strong commitment to quality, we follow rigorous testing procedures and use only the best materials, such as Rogers and ceramic PCBs, to enhance antenna performance. Whether you need a standard or custom Wi-Fi antenna PCB, Best Technology provides expert solutions tailored to your specific needs.

If you’re looking for a reliable manufacturer that delivers precision, durability, and superior signal quality, Best Technology is your trusted partner. Contact us today to discuss your Wi-Fi antenna PCB requirements!

FAQs

1. What is the difference between a Wi-Fi PCB antenna and a traditional external antenna?

Wi-Fi PCB antennas are integrated into the circuit board, offering a more compact design. Traditional external antennas are often bulkier and may be prone to damage.

2. Can I use a Wi-Fi antenna PCB for other wireless communication systems?

Yes, Wi-Fi antenna PCBs can be adapted for other wireless communication standards, such as Bluetooth or Zigbee, by adjusting the design to match the required frequencies.

3. How can I improve the performance of my Wi-Fi antenna PCB?

Optimizing the layout, material choice, and impedance matching can help improve the performance of your Wi-Fi antenna PCB.

4. Is it possible to manufacture custom Wi-Fi antenna PCBs?

Yes, many PCB manufacturers offer custom designs based on your specific needs, whether it’s for unique form factors or enhanced performance.

You may also like

Dual-band antenna design, dual band antenna PCB Manufacturer
星期一, 10 3 月, 2025

In the field of wireless communications, a dual-band antenna is an antenna that can simultaneously support two different frequency bands (such as 2.4GHz and 5GHz). It has a wider frequency band compatibility and can flexibly switch frequency bands according to the actual wireless environment to achieve better communication performance. It plays an important role in scenarios such as home WiFi coverage, IoT device connection, and mobile communication base station deployment.

Dual-band antenna design, dual band antenna PCB Manufacturer

What is a dual band antenna?

A dual-band antenna is designed to operate on two different frequency bands(such as 2.4GHz and 5GHz), allowing a single antenna to handle multiple communication signals. This enhances connectivity by providing better coverage, improved performance, and greater flexibility for wireless applications.

These antennas are commonly used in Wi-Fi, mobile networks, and radio communication systems, where seamless switching between frequencies is essential.

Unlike single-band antennas, which work on a fixed frequency, dual-band antennas can transmit and receive signals on two separate bands, often reducing interference and ensuring stronger signal transmission. They are widely integrated into modern wireless devices, routers, and mobile networks, offering more stable and efficient communication.

What are the types of dual band antennas?

Dual-band antennas come in different forms, each catering to specific applications. Some common types include:

  • Omnidirectional Dual-Band Antennas: Provide 360-degree signal coverage, making them ideal for Wi-Fi routers and mobile devices.
  • Directional Dual-Band Antennas: Focus signals in one direction, enhancing signal strength and range. Used in point-to-point communication systems.
  • Patch Dual-Band Antennas: Compact and low-profile, commonly used in embedded wireless applications.
  • Yagi Dual-Band Antennas: Feature high gain and directionality, ideal for long-range communication.
  • Base Station Dual-Band Antennas: Designed for cell towers and communication networks, ensuring broad coverage and reliability.

Each type is suited for different environments, from home networks to industrial and military applications. Choosing the right one depends on range, interference, and installation needs.

What is the difference between single band and dual band antenna?

Single-band antennas operate on one fixed frequency, limiting connectivity and flexibility. They are suitable for basic wireless communication but struggle with congestion and interference in crowded networks.

Dual-band antenna design, dual band antenna PCB Manufacturer

Dual-band antennas, on the other hand, can switch between two frequency bands, often 2.4 GHz and 5 GHz for Wi-Fi applications. The 2.4 GHz band offers better range but lower speed, while 5 GHz provides faster speeds with less interference. This versatility enhances performance, making dual-band antennas a preferred choice for modern networking and communication needs.

How does a dual band antenna work?

A dual-band antenna uses a design that allows it to resonate at two distinct frequencies. It achieves this through:

  • Multiple resonators or feed elements to handle different frequency bands.
  • Matching circuits to optimize performance and minimize signal loss.
  • Advanced materials and structures to support stable signal propagation.

When a device connects, the antenna automatically switches between bands based on signal strength, interference, and network demand. This ensures seamless connectivity, reduced dropouts, and enhanced data transmission.

How to design a dual band antenna?

Designing a dual-band antenna requires precision and expertise. The key factors to consider include:

  • Frequency Selection: Define the two operating frequency bands based on application needs.
  • Antenna Structure: Choose between patch, dipole, or monopole designs for optimal efficiency.
  • Material Selection: Use low-loss, high-dielectric materials to enhance performance.
  • Impedance Matching: Optimize signal transfer and minimize power loss.
  • Compactness and Integration: Ensure compatibility with PCB layouts and enclosure constraints.

What are the advantages of dual band antennas?

Dual-band antennas bring numerous benefits, including:

  • Stronger Connectivity: Minimized interference and congestion, ensuring stable wireless signals.
  • Higher Speeds: Optimized data transmission on less crowded frequency bands.
Dual-band antenna design, dual band antenna PCB Manufacturer
  • Enhanced Coverage: Supports both long-range and high-speed applications.
  • Flexibility: Works across various wireless systems, from Wi-Fi to mobile networks.
  • Energy Efficiency: Reduced signal loss improves battery life in mobile devices.

What are the applications of dual band antennas?

Dual-band antennas play a critical role in modern communication systems. They are used in:

  • Wi-Fi Routers and Access Points: Delivering high-speed internet with better coverage.
  • Smartphones and Tablets: Supporting seamless switching between networks.
  • Automotive Communication: Enabling GPS, Bluetooth, and wireless connectivity in vehicles.
  • IoT and Smart Devices: Powering wireless sensors, smart home systems, and industrial automation.
  • Two-Way Radios and Base Stations: Ensuring clear and reliable communication in remote areas.

Their versatility and performance make them essential for various wireless applications.

Dual band antenna PCB Manufacturer

For high-performance dual-band antennas, a well-designed PCB is crucial. At BEST Technology, we specialize in manufacturing high-quality dual-band antenna PCBs with precision and efficiency. Our advantages include:

  • Low Volume: No matter your order size, we deliver consistent quality.
Dual-band antenna design, dual band antenna PCB Manufacturer
  • High Quality Assurance: Every PCB undergoes strict testing and inspection to meet industry standards.
  • Fast Delivery: We ensure on-time production and quick shipping, minimizing downtime.
  • Customization Services: Our engineers offer tailored solutions to fit specific frequency and design requirements.

If you need a reliable partner for your dual-band antenna PCB, BEST Technology is here to help. Contact us at sales@bestpcbs.com to discuss your project today!

You may also like

What is Pick and Place File in PCBA?
星期六, 8 3 月, 2025

What is the Pick and Place File for PCB Assembly?

When assembling printed circuit boards, precise component placement matters a lot. That’s where the pick and place file in PCBA comes into play. This file lists each component’s location, orientation, and part number. It acts like a map that guides the machine responsible for placing components on the bare board. Without this data, machines have no clue where to position capacitors, resistors, or ICs.

The pick and place file, often called centroid file or XY data, acts as a bridge between the PCB design and the assembly process. It reduces human error, saves time, and boosts placement accuracy. Whether working on simple boards or complex multi-layer designs, this file makes the whole assembly process smoother and faster.

What is Pick and Place File in PCBA?

Why Does Pick & Place File Matter?

Every part on a PCB must land at the right spot. Even a minor offset can cause failures. The pick and place file ensures every component fits exactly where it belongs. It helps pick and place machines grab components and place them perfectly, following the designer’s plan.

Without this file, assembly teams would have to rely on manual placement or visual aids. That takes time and increases errors. Machines work faster, more consistently, and far more accurately than human hands. With a proper pick and place file, the machine knows the part number, package type, rotation angle, and X-Y coordinates for every single component.

This file also reduces the chances of missing parts or placing them upside down. When assembling hundreds or thousands of boards, even small mistakes add up. A clean, accurate file makes sure the entire batch meets quality standards, which is crucial for reliable products.

What is the Format of Pick and Place Machine File?

Most files use common formats, such as CSV (comma-separated values) or TXT (plain text). These work with nearly all pick and place machines, so manufacturers can share files easily across different platforms. The pick and place file in PCBA follows a simple structure that’s easy for machines and software to read. Though formats may vary slightly across design software, most include the following:

  • Reference Designator – Marks each component, like R1 or U3.
  • Part Number – Shows the specific part used.
  • Package Type – Explains the physical size and shape, like 0402 or QFP.
  • X Coordinate – Tells the machine the horizontal placement.
  • Y Coordinate – Sets the vertical placement.
  • Rotation Angle – Shows how the part should turn to match the footprint.
  • Layer Information – Identifies if the part sits on the top or bottom side.

Pick and Place File Example

Here’s a simple pick and place file example to help visualize what it looks like:

Pick and Place File Example

This is just a small sample, but real files often contain hundreds or thousands of lines depending on the design complexity. Each line defines one component, ensuring machines have clear placement instructions.

How to Make a Pick and Place File?

Creating a pick and place file in PCBA starts in the design software. When laying out components, the software records the exact position, angle, and orientation for each part. Once the layout’s complete, the file can be generated directly from the software.

Steps generally follow this flow:

  1. Place all components and finalize the PCB layout.
  2. Label every part with clear reference designators.
  3. Assign correct part numbers and footprints.
  4. Check for correct orientation and ensure no components overlap.
  5. Export the pick and place file using the software’s built-in tools.

Good design habits, like keeping components aligned and properly spaced, also improve the file’s accuracy and make downstream processes smoother.

How to Generate Pick and Place File in Altium?

In Altium Designer, generating a pick and place file only takes a few steps. Altium makes the process intuitive, so designers don’t need extra plugins or manual tools. Here’s how it works:

  1. Open the PCB layout in Altium.
  2. Navigate to File > Assembly Outputs > Generate Pick and Place Files.
  3. Choose the top and bottom layers if needed.
  4. Select the output format (usually CSV or TXT).
  5. Review the preview to check for missing or misaligned parts.
  6. Save the file to the desired location.

Altium gives options to customize column order, units, and decimal precision. Double-checking these settings ensures the file works smoothly with the intended assembly equipment.

How to Export Pick and Place File?

The actual export process varies by software, but the core steps stay similar across most platforms. Here’s a general guide:

1. Open the completed PCB layout file.

2. Confirm all parts have correct designators, footprints, and placements.

3. Open the Output or Export menu (naming varies by software).

How to Export Pick and Place File?

4. Choose Pick and Place File or Centroid File from the list and export.

How to Export Pick and Place File?

5. Select output preferences — file type, units, layers, etc.

How to Export Pick and Place File?

6. Review the file for missing data before saving.

Most tools let designers export top and bottom placements separately or combined. Always double-check orientation and rotation values since errors here cause misaligned parts during assembly.

How to Generate Pick and Place File from Gerber?

Gerber files mainly handle copper, solder mask, and silkscreen layers — they don’t directly hold placement data. However, some design tools can extract placement data if the Gerbers contain embedded component data, which isn’t common.

If placement data isn’t embedded, the best approach is to return to the original PCB design file. Most PCB CAD software (like Altium, KiCad, or Eagle) can regenerate a pick and place file directly. If the original design file is unavailable, creating a new placement file requires manual work — identifying parts from the silkscreen and manually recording coordinates.

What is the Pick and Place Process?

The pick and place process starts after the bare PCB arrives at the assembly line. Machines read the pick and place file to know exactly where each component should go. Here’s a simplified version of the steps:

1. Preparing the PCB

Prepare the bare PCB carefully before the assembly process starts. Full inspection is needed to check for defects, scratches, or contamination. For PCBs stored for a long time, baking is important to remove moisture, which helps avoid soldering issues later. After that, solder paste is applied to the pads where components will sit.

2. Feeding the Components

Next, components get loaded into the machine through feeders. These feeders hold reels, trays, or sticks of parts, all arranged in order. Each component type has its own feeder position, linked to the pick and place file.

3. Picking Up Components

The machine starts by picking up components from the feeders using vacuum nozzles. Each nozzle is designed to handle a specific part size, from tiny resistors to larger ICs. The machine uses gentle suction to grab each component without damaging it.

4. Vision Inspection and Alignment

After picking up each component, the machine checks its orientation using a vision system. High-resolution cameras take images to see if the part is facing the right way. If there’s any slight misalignment, the machine rotates the part to the correct angle before placement.

5. Placing Components on the Board

Once the part is aligned, the machine places it onto the PCB. Each component is placed at the exact coordinates provided in the pick and place file. The machine also adjusts the rotation angle to match the footprint on the board. Parts are placed carefully with the right amount of pressure to avoid damaging delicate parts or shifting the solder paste.

6. Speed and Precision Combined

Pick and place machines combine high speed with extreme precision. Modern machines can place thousands of parts per hour, even at microscopic sizes. While speed matters, accuracy is even more important. Each placed component must sit perfectly on its pad, since even the smallest shift could cause electrical issues after soldering.

7. Handling Different Part Sizes

Pick and place machines handle a wide range of components, from tiny 0201 resistors to large connectors. The machine automatically switches nozzles based on the part size.

8. Real-Time Monitoring

Throughout the process, the machine monitors everything in real time. Sensors track part pick-up, alignment checks, and placements. If a feeder runs empty or a part fails inspection, the machine pauses and alerts the operator.

9. Final Transfer for Soldering

Once all parts are placed, the PCB moves to the next step — reflow soldering. The solder paste melts during this stage, permanently bonding each component to the board. Accurate placement during the pick and place process helps ensure every connection forms correctly, which supports good electrical performance in the final product. Here is a full manufacturing process of PCB assembly:

In short, the pick and place process bridges the gap between PCB design and working hardware. It translates design data into real, physical assemblies — fast, accurately, and reliably. Without it, modern electronics manufacturing wouldn’t be able to meet today’s high standards for quality and volume.

At Best Technology, our pick and place process combines high-speed machines, careful file preparation, and experienced operators. Our team knows how important clear placement data is for delivering high-quality PCBs. If you’re looking for reliable PCB assembly services or want help preparing your files, feel free to reach out. We’ll make sure your designs turn into top-quality products, every time.

You may also like

What is PCB conformal coating? What is its use?
星期五, 7 3 月, 2025

PCB conformal coating is a thin layer of polymer applied to the surface of a PCB to protect the circuits and board components from environmental stresses. The coating ensures that the PCB maintains high performance and reliability in the face of moisture, condensation, dust, dirt, chemicals, corrosion and other adverse environmental conditions.

What is PCB conformal coating? What is its use?

What is Conformal Coating?

Conformal coating is a liquid polymer film applied to a printed circuit board (PCB) to protect it from environmental factors. It conforms to the board’s shape, covering components without affecting their function. This coating prevents damage from humidity, dust, salt spray, and chemical exposure, which can cause corrosion and electrical failures.

It is commonly used in aerospace, automotive, medical, and industrial electronics, where protection is crucial for long-term performance. The coating also helps prevent short circuits caused by contaminants and enhances the overall durability of the PCB.

What Are the 5 Types of Conformal Coating?

There are several types of conformal coatings, each offering unique benefits based on the application requirements. The five most commonly used coatings are:

  • Acrylic acid (AR): After liquid coating, it is heated and cured at room temperature, providing cost-effective moisture protection, easy to apply and reworkable, suitable for conventional environments such as consumer electronics, but its high temperature resistance is limited.
  • Silicone (SR): Ideal for extreme temperature environments, with excellent weather resistance and shock resistance, widely used in high reliability scenarios such as aerospace and automotive electronics.
  • Polyurethane (UR): It has strong chemical resistance and wear resistance, but it is difficult to remove after curing, suitable for industrial control panels that require long-term protection and low maintenance requirements.
  • Epoxy resin (ER): Thermosetting materials require high temperature curing, provide a rigid protective layer, and are extremely resistant to solvents, moisture and mechanical stress, but the high hardness makes rework difficult, and is mostly used in military or harsh environment equipment.
  • Parylene (XY): It is formed into a thin film through vacuum vapor deposition, has excellent moisture resistance and chemical resistance, and is suitable for precision scenarios such as medical implants and high-frequency circuits, but the process is complex and the cost is high.

Each type has its advantages depending on the operating environment, durability needs, and repairability of the PCB.

Do All PCBs Have Conformal Coating?

No, not all PCBs require conformal coating. It depends on the intended use of the board. Consumer electronics, such as smartphones and laptops, may not need it since they are protected within enclosures.

What is PCB conformal coating? What is its use?

However, industrial, medical, and military PCBs often require this coating due to exposure to extreme conditions, moisture, or contaminants.

For products that must operate in outdoor, high-humidity, or chemical-rich environments, conformal coating is essential to maintain reliability.

What is the Point of Conformal Coating?

The primary purpose of conformal coating is to protect electronic circuits from environmental damage. It prevents issues like corrosion, oxidation, and short circuits caused by moisture or contaminants.

It also provides:

  • Enhanced Reliability: Reduces the risk of failure in harsh conditions.
  • Longer Lifespan: Protects components from physical and chemical wear.
  • Improved Performance: Prevents signal interference from conductive debris.
  • Cost Savings: Reduces maintenance and replacement costs over time.

With conformal coating, PCBs perform better, last longer, and withstand more challenging environments without degradation.

When to Apply Conformal Coating?

Conformal coating should be applied after the PCB assembly process but before final testing. This ensures that all components are correctly placed and functioning before adding the protective layer.

It is best applied when:

The PCB will be exposed to moisture, dust, or chemicals.

The circuit operates in high-temperature or high-humidity environments.

There is a risk of vibration or mechanical stress affecting performance.

Applying the coating at the right stage prevents contamination and defects while ensuring maximum protection.

How to Apply Conformal Coating?

The application method depends on the type of coating, production volume, and precision requirements. The most common methods include:

  • Brushing: Ideal for small-scale or repair applications. Simple and cost-effective but less precise.
What is PCB conformal coating? What is its use?
  • Spraying: Provides an even coating over large surfaces. Used for medium-scale production and manual application.
  • Dipping: PCB is submerged in the coating liquid. Ensures full coverage but may lead to excess material buildup.
  • Selective Coating Machines: Uses robotic arms to apply coating only where needed. Precise and efficient for high-volume production.

After application, the coating must cure using air drying, heat, or UV light, depending on the material used. Proper curing ensures maximum adhesion and durability.

How to Remove Conformal Coating?

Although conformal coatings are designed to be permanent, they can be removed when necessary, such as during repairs or modifications. The removal method depends on the type of coating:

  • Solvent Removal: Works for acrylic and some urethane coatings. Chemical removers dissolve the coating without damaging the PCB.
  • Thermal Removal: Applying heat softens some coatings, making them easier to scrape off.
  • Mechanical Removal: Abrasive tools can scrape or sand away rigid coatings like epoxy.

Proper removal ensures that the PCB remains intact while allowing for necessary repairs or modifications.

What Are the Disadvantages of Conformal Coating?

Although conformal coating provides excellent protection, it has some limitations:

  • Difficult Repairs: Once coated, components can be harder to access for modifications.
  • Extended Drying Time: Some coatings take longer to cure, delaying production.
  • Application Complexity: Requires specialized equipment for precision coating.
  • Removal Challenges: Hard coatings like epoxy are difficult to remove without damaging the PCB.

Despite these challenges, the benefits of conformal coating far outweigh the drawbacks, making it a valuable solution for electronic protection.

Is Solder Mask the Same as Conformal Coating?

No, solder mask and conformal coating serve different purposes.

What is PCB conformal coating? What is its use?
  • Solder Mask: A permanent protective layer applied during PCB manufacturing. It prevents solder bridges and protects copper traces from oxidation.
  • Conformal Coating: Applied after assembly to protect against moisture, dust, and chemicals. It is a transparent layer that shields the entire circuit.

While both offer protection, solder mask is built into the PCB, while conformal coating is an additional layer for enhanced durability.

Can We Apply Conformal Coating?

Yes, BEST Technology provides professional conformal coating services backed by 18+ years of PCB manufacturing expertise.

With advanced conformal coating equipment and a team of skilled professionals, BEST Technology ensures precise application, superior protection, and long-lasting performance for circuit boards. Whether you need acrylic, silicone, urethane, epoxy, or parylene coatings, BEST Technology can meet specific requirements with high-quality, industry-standard solutions.

Conclusion:

Conformal coating is an essential protective solution for PCBs operating in challenging environments. It ensures long-term reliability, prevents corrosion, and enhances performance in critical applications.

Though it adds complexity to the production process, the benefits of conformal coating far outweigh the disadvantages. It extends the lifespan of electronic devices. For professional PCB solutions, contact sales@bestpcbs.com

You may also like

RF Ceramic Substrate for Microwave, Ceramic PCB Prototype & Manufacturing
星期四, 6 3 月, 2025

What is RF Ceramic Substrate?

RF ceramic substrate is a key component for RF circuit and microwave circuit, it refers to a specialized ceramic material designed to support high-frequency circuits used in radio frequency systems. Unlike traditional materials, ceramic substrates used for RF circuits offer low signal loss, stable dielectric properties, and strong thermal resistance. It is usually made of alumina (Al₂O) ₃ ceramic material, with good insulation properties, high temperature stability and low dielectric loss characteristics, the dielectric constant is usually between 9-12, dielectric loss Angle is less than 0.0003.

RF Ceramic Substrate for Microwave, Ceramic PCB Prototype & Manufacturing

Types of RF Ceramic Substrate

1. Alumina-Based Substrate

Alumina (Al2O3) is widely used for RF ceramic substrates because it offers high thermal conductivity, good mechanical strength, and stable dielectric behavior at high frequencies. It can handle both RF and microwave signals, making it suitable for communication systems, radar, and aerospace devices.

2. Aluminum Nitride (AlN) Substrate

Aluminum nitride offers both high thermal conductivity and lower dielectric constant compared to alumina. This helps improve signal integrity in high-speed circuits. AlN substrates work well in applications needing both heat dissipation and frequency stability, like power amplifiers and phased array antennas.

3. Beryllium Oxide (BeO) Substrate

BeO substrates provide the highest thermal conductivity among ceramic options. Although used less frequently due to handling concerns, BeO still finds use in specialized high-power RF systems where heat removal is critical.

RF Ceramic Substrate vs. Normal Ceramic Substrate

Not all ceramic substrates perform equally, especially when handling RF signals. Regular ceramic substrates, like those used in standard circuits, mainly focus on mechanical strength and insulation. Electrical performance, especially at high frequencies, often comes second.

RF ceramic substrates, however, prioritize electrical performance. They offer low dielectric loss, controlled dielectric constant, and tight tolerances, all of which ensure signals move smoothly without distortion. In microwave circuits, even minor changes in material properties can cause signal loss or unwanted interference. In addition to this, they are differ from materials composition and applications:

1. Material Composition

  • RF Ceramic Substrates: Typically made from Class I ceramic materials, including alumina (Al₂O₃), aluminum nitride (AlN), and silicon nitride (Si₃N₄). These materials offer good thermal conductivity, high-frequency performance, and excellent high-temperature stability.
  • Normal Ceramic Substrates: Primarily made from inorganic materials like alumina (Al₂O₃) and aluminum nitride (AlN). While these materials perform well at high temperatures, they do not match RF ceramic substrates in terms of high-frequency performance.

2. Application Fields

  • RF Ceramic Substrates: Primarily used in RF and microwave circuits, such as mobile communication base stations, broadcast transmitters, MRI coils, semiconductor RF power supplies, laser equipment, military radios, radar systems, and complete RF microwave devices. They are also used in power amplifiers, LC filters, transceiver modules, and microwave components.
  • Normal Ceramic Substrates: Widely used in high-power LED lighting, high-frequency communication, and railway power systems. They are valued for their excellent heat dissipation and high-temperature stability.

Benefits of RF Ceramic Substrate for Microwave

1. Low Dielectric Loss

RF ceramic substrates minimize signal loss at high frequencies, which helps maintain signal strength even across longer transmission paths.

2. Stable Dielectric Properties

Ceramic substrates keep their dielectric constant stable across wide temperature and frequency ranges.

3. Excellent Thermal Management

Microwave circuits often generate heat, especially at higher power levels. Ceramic substrates, particularly AlN and BeO, offer strong heat dissipation, it helps prevent thermal damage while preserving electrical performance.

4. Environmental Durability

Microwave systems used in aerospace, defense, and satellite applications face harsh environments, including vibration, radiation, and extreme temperatures. Ceramic substrates handle these conditions without losing mechanical or electrical reliability.

5. Precision Manufacturing

Ceramic substrates for RF circuits support fine-line patterns, which allows designers to create high-density circuits without losing signal integrity.

RF Ceramic Substrate for Microwave, Ceramic PCB Prototype & Manufacturing

Ceramic Substrate HS Code

The HS code for ceramic substrates used in electronic circuits generally falls under 8547.10.00. However, for substrates specifically designed for RF or microwave circuits, local customs authorities may apply slight variations depending on composition, thickness, or intended use.

Well-Known RF Ceramic Substrate Brands

When choosing RF ceramic substrates, selecting reliable materials from established brands helps ensure consistent performance. Several companies specialize in developing high-performance ceramic materials specifically for RF and microwave applications. Below are some well-known names trusted across industries like telecom, aerospace, automotive radar, and satellite systems.

  • Rogers Corporation
  • Kyocera Fine Ceramics
  • Coorstek
  • Murata Manufacturing
  • Maruwa
  • NGK Spark Plug Co., Ltd.
  • Heraeus Electronics

At Best Technology, we offer customized RF ceramic PCBs for our customers, we have stable supply chain and enough stock in our warehouse. Therefore, we can handle time-sensitive orders and provide expedited service if you are urgent.

RF Ceramic Substrate Uses

  • Wireless communication modules like 5G antennas, RF front-end modules, and satellite communication devices.
  • Radar and sensing systems, including automotive radar, weather radar, and defense radar systems.
  • Aerospace and space electronics, such as satellite payloads, deep-space communication, and onboard electronics.
  • Medical imaging and equipment, including MRI and wireless telemetry devices.
  • Industrial RF Systems, like RF heating systems, test instruments, and high-frequency sensors.

RF Ceramic PCB Design Considerations

Designing RF ceramic PCBs requires a deep understanding of both high-frequency circuit behavior and ceramic material properties. Compared to standard FR4 or other organic substrates, ceramic materials handle RF signals differently, especially at microwave and millimeter-wave frequencies. Below are the key considerations to achieve stable signal transmission, low loss, and reliable performance.

RF Ceramic Substrate for Microwave, Ceramic PCB Prototype & Manufacturing

1. Dielectric Constant and Its Stability

The dielectric constant (Dk) directly affects signal propagation speed and impedance matching. Ceramic substrates, such as Al₂O₃ or AlN, typically have Dk values ranging from 9 to 10 for Al2O3 and 8 to 9 for AlN. It’s not just about Dk itself but also its stability over frequency and temperature changes. For RF circuits, materials with minimal Dk variation across frequencies (up to 40 GHz and beyond) help maintain consistent phase and impedance control, which directly impacts signal integrity.

2. Loss Tangent (Df) and Signal Attenuation

Loss tangent (Df) measures how much energy the substrate material absorbs during signal transmission. Lower Df leads to less signal attenuation, especially at high frequencies.

For comparison, FR4’s Df can exceed 0.015 at 10 GHz, While a reliable data from Murata’s ceramic materials shows Df values around 0.0005 to 0.0010 at 10 GHz, which outperforms many organic substrates.

3. Conductor Surface Roughness

For microwave circuits, copper foil roughness directly affects insertion loss. Rougher copper increases conductor loss, especially above 10 GHz. Ceramic PCBs often use low-profile copper, with surface roughness below 2 µm (Rz), to minimize skin effect losses at high frequencies.

4. Coefficient of Thermal Expansion (CTE) Matching

Alumina substrates typically have a CTE around 6.5 ppm/°C, which aligns reasonably well with copper’s 17 ppm/°C when using proper bonding techniques. For applications like satellite communications, where temperature swings can exceed ±100°C, this balance ensures mechanical reliability.

5. Transmission Line Structures and Impedance Control

To design RF circuits on ceramic substrates, engineers often use microstrip, coplanar waveguide (CPW), or stripline structures. Achieving tight impedance control (±5% or better) requires precise trace width calculation, gap spacing, and accurate Dk data across the operating frequency range. For example, a 50-ohm microstrip line on 99.6% alumina with a 0.635 mm (25 mil) thickness requires a trace width around 1.5 mm, but the exact value shifts slightly based on the operating frequency and whether the substrate uses thin-film or thick-film copper.

6. Thermal Management for High-Power RF Circuits

High-power RF circuits, such as power amplifiers (PAs) or radar transmitters, generate considerable heat. Aluminum nitride (AlN) substrates, with thermal conductivity reaching 170 W/m·K, outperform alumina (20-25 W/m·K) by almost seven times. This high thermal conductivity helps dissipate heat efficiently, reducing thermal gradients that could detune RF circuits.

7. Via and Plating Quality

Plated vias connect RF traces between layers or serve as ground vias to improve EMI shielding. In RF ceramic PCBs, via diameters as small as 100 µm are common, especially in LTCC packages.

For more information about RF ceramic PCB design guide, welcome to contact us at sales@bestpcbs.com. We offer free technical support for any PCB frequent asked questions.

Why Choose Best Technology as Your RF Ceramic PCB Supplier?

At Best Technology, we specialize in RF ceramic PCB manufacturing with over 18 years of experience serving global clients. We understand how critical dielectric stability, thermal management, and mechanical precision are for RF and microwave systems. Our in-house testing and quality checks ensure every board meets your performance standards, whether for 5G modules, radar systems, or aerospace electronics. At Best Technology, you can enjoy:

  • Products control under ISO13485, IATF16949, AS9100D system
  • Stable supply chain (cover various brands ceramic substrate)
  • Cutting edge technology for ceramic PCB manufacturing
  • Professional ceramic PCB engineer technical support
  • DDU & DDP quotation
  • 2-3Weeks delivery
  • Highest quality
  • Customized RF ceramic PCB design
  • Turn-key service

With custom design support, quick turnaround, and flexible production options, we help clients bring RF innovations to market faster. Contact Best Technology today to see how our RF ceramic PCB solutions can support your next project.

You may also like

What is a perf board? How to use a perf board?
星期四, 6 3 月, 2025

Perf board is a board used in the field of electronics and PCB. It is a board with grid holes. These holes are used to insert and solder the pins of electronic components and are used to place and solder electronic components. It is similar to a breadboard, but is mainly used in situations where soldering is required, and is suitable for simple circuit design and prototyping.

What is a perf board? How to use a perf board?

What is a Perf Board?

A perf board, short for perforated board, is a flat board with a grid of holes. These holes are plated or non-plated, allowing electronic components to be mounted and soldered.

Unlike a PCB, which has pre-designed traces, a perf board gives complete freedom to create custom wiring connections.

Perf boards are ideal for prototyping and small-scale projects. They serve as an intermediate step between breadboarding and full PCB manufacturing. Many electronics enthusiasts rely on perf boards to refine their designs before moving to mass production.

What Does a Perf Board Do?

A perf board acts as a platform for circuit assembly. It allows components like resistors, capacitors, and integrated circuits (ICs) to be mounted securely. By connecting these components using solder and wires, a functional electronic circuit is created.

What is a perf board? How to use a perf board?

Unlike a breadboard, which is temporary, a perf board provides a permanent and durable solution. Once components are soldered, they remain firmly in place, ensuring a stable connection and reliable performance.

What is the Difference Between a Perf Board and a Breadboard?

Both perf boards and breadboards are used for building circuits, but they serve different purposes.

Breadboards are reusable, allowing circuits to be assembled without soldering. They are great for testing ideas but are not ideal for permanent designs.

Perf boards require soldering but create stronger and more reliable connections. They are used when a project needs to be more durable than a breadboard prototype.

Breadboards have internal metal connections, making wiring easy. Perf boards require manual wiring, offering complete customization.

How Do Perf Boards Work?

A perf board works by providing a physical base for electronic components. Each hole allows component leads to pass through. Solder is used to create permanent electrical connections.

There are different types of perf boards:

Single-sided perf boards have copper pads on one side for easy soldering.

Double-sided perf boards have pads on both sides, enabling more complex connections.

Stripboard perf boards have connected rows of copper, simplifying circuit routing.

Since there are no predefined traces, wiring must be done manually using solder bridges, jumper wires, or thin copper wires. Proper planning helps prevent messy connections and improves circuit performance.

How to use a perf board?

Using a perforated board (also known as a hole board or a universal board) to build a circuit requires welding to connect components. Its operation process is essentially different from that of a breadboard.

First, you need to plan the component layout according to the circuit diagram, insert the component pins into the corresponding holes, pay attention to polarity and spacing, and ensure that components such as integrated circuits, resistors, and capacitors are arranged neatly. When laying out, the wire length should be shortened as much as possible, and the component pins themselves can be used as connection points to simplify welding.

Next, you need to use solder to weld the component pins to the copper foil surface of the perforated board. Before welding, you need to clean the oxide on the surface of the copper foil, and use rosin flux to improve the welding quality.

For jumper wires, you can choose thin enameled wires or tinned copper wires, and weld them along the copper foil routing direction. If necessary, you can use wires to connect different areas on the back of the board. After welding, you need to cut off the excess pins of the component, and use a multimeter to check whether each solder joint is conductive to confirm that there is no short circuit or cold soldering.

To increase the success rate, you can draw a perforated board layout diagram on paper in advance, marking the component positions and routing paths. For complex circuits, modular welding can be used to test functions part by part. Beginners are advised to use a soldering station instead of a soldering iron to control the temperature and prevent damage to components.

In addition, the copper foil surface of the perforated board should be kept clean, and excessive solder accumulation should be avoided during soldering, which may cause short circuits in adjacent copper foils. The completed circuit can be fixed in the housing with screws, which is suitable for making electronic devices that need to be used for a long time.

What is a Perf Board Made Of?

Perf boards are made from different materials, depending on durability and cost requirements.

  • FR4 (Fiberglass): Strong and heat-resistant, commonly used for professional projects.
What is a perf board? How to use a perf board?
  • Phenolic Resin: Cheaper but more fragile, suitable for low-cost applications.
  • Epoxy Boards: Lightweight and flexible, but less durable than FR4.

The copper pads on perf boards can be tin-plated for better solder adhesion. Some high-quality boards have gold-plated pads, offering better conductivity and corrosion resistance.

How to Make a Perf Board?

Creating a perf board from scratch requires precision. The board must have evenly spaced holes and strong material for durability.

Manufacturers follow these steps:

  • Material SelectionFR4, phenolic, or epoxy sheets are chosen based on the application.
  • Hole Drilling – A grid of evenly spaced holes is drilled using CNC machines.
  • Copper Plating (Optional) – Some boards are coated with copper to improve conductivity.
  • Cutting and Finishing – The board is trimmed to standard sizes and inspected for defects.

For DIY projects, modifying an existing board is easier than making one from raw materials.

How to Cut a Perf Board?

Cutting a perf board requires precision to avoid damaging the holes or copper pads. The best methods include:

  • Score and Snap – Using a sharp knife, score the board along a straight line, then snap it carefully.
  • Hacksaw or Rotary Tool – A fine-tooth saw or Dremel cuts through thick boards easily.
  • Shears – Heavy-duty scissors work for thinner boards but may cause rough edges.

After cutting, sanding the edges ensures a smooth finish. It prevents sharp corners from damaging wires or components.

How to Assemble Electronic Components on a Perf Board?

Building a circuit on a perf board follows a structured process:

What is a perf board? How to use a perf board?
  • Plan the Layout – Arrange components logically to minimize wire clutter.
  • Insert Components – Place resistors, capacitors, ICs, and other parts into the holes.
  • Solder the Connections – Secure each component with solder, ensuring strong joints.
  • Add Wires or Solder Bridges – Use insulated wires or solder traces to connect components.
  • Test the Circuit – Check for short circuits or missing connections before finalizing.

Good soldering techniques prevent weak joints and ensure a long-lasting circuit. Proper planning and clean wiring improve circuit performance.

Conclusion:

A perf board is an essential tool for prototyping and DIY electronics. It bridges the gap between temporary breadboards and professional PCBs. For high-quality custom perf boards, contact sales@bestpcbs.com

You may also like

What is a keyboard pcb? Keyboard PCB guide
星期三, 5 3 月, 2025

The keyboard PCB is the core component inside the keyboard, responsible for connecting each key and transmitting electrical signals. It contains components such as microcontrollers, diodes, resistors, capacitors, and light-emitting diodes to process key signals and communicate with the computer.

The design and type of the keyboard PCB will affect the feel and performance of the keyboard. Common types include hot-swappable PCB and soldered PCB. Hot-swappable PCB is easy to disassemble and replace, suitable for users who pursue customization, while soldered PCB is more stable and suitable for high-end keyboards.

What is a keyboard pcb? Keyboard PCB guide

What is a Keyboard PCB?

A keyboard PCB (Printed Circuit Board) is a thin board made of fiberglass or other durable materials, with copper traces and electronic components that allow the keyboard to communicate with a computer. It connects all the switches and transfers keypress signals to a controller, which processes the input.

Unlike traditional rubber dome keyboards, mechanical keyboards use a more advanced PCB that supports various switch types, customizable firmware, and advanced features like RGB lighting and macros.

Some keyboards use a hot-swappable PCB, which allows users to change switches without soldering. Others require permanent soldering, making modifications more complex. More advanced versions, such as Hall effect PCBs, rely on magnets instead of physical contact for key activation, offering greater durability and precision.

How to Design a Keyboard PCB?

Designing a keyboard PCB starts with defining the layout. The first step is deciding the number of keys, spacing, and size. Keyboards come in various sizes—full-size, tenkeyless (TKL), 75%, 60%, and even split ergonomic layouts.

After defining the layout, engineers use software like KiCad, Eagle, or Altium to create schematics. The PCB must include appropriate traces for key signals, diodes for anti-ghosting, and microcontrollers like an Atmel ATmega32U4 or STM32, which processes key inputs.

What is a keyboard pcb? Keyboard PCB guide

Engineers must also consider USB connectivity, ensuring reliable power and data transfer. Once the design is complete, the PCB undergoes prototyping to test functionality before mass production.

How to Make a Keyboard PCB?

Manufacturers use FR4 for durability. The PCB is manufactured using a layering process where copper is etched to form electrical pathways. Holes are drilled to accommodate switches and components. After etching, a protective solder mask is applied, followed by a silkscreen layer for labeling.

Quality control is essential. Each PCB undergoes electrical testing to check for short circuits or defects. Once approved, it moves to the assembly process, where switches, diodes, resistors, and controllers are mounted onto the board.

How to Solder a Keyboard PCB?

Soldering a keyboard PCB requires patience. First, switches are placed into the PCB and secured with a plate. Each switch has two metal pins that must be soldered to their corresponding PCB pads. Using a soldering iron, heat is applied to the joint, melting solder to create a strong electrical connection.

Proper soldering techniques prevent cold joints, which can cause inconsistent key response. Lead-free solder is preferred for environmental reasons, but it requires higher temperatures.

What is a keyboard pcb? Keyboard PCB guide

Once all switches are soldered, the PCB is connected to a computer for testing. If any keys fail to register, reflowing the solder joint usually solves the issue.

How to Clean a Keyboard PCB?

Dirt and dust can accumulate on a PCB over time, leading to key malfunctions. Cleaning a keyboard PCB is simple. A soft brush, compressed air, or isopropyl alcohol helps remove debris. Avoid using water, as moisture can cause short circuits.

If liquid spills occur, immediate cleaning with alcohol prevents permanent damage. Regular maintenance ensures long-term performance.

What are the Types of Keyboard PCBs?

Keyboards come in different PCB configurations, each catering to specific needs:

  • Hot-Swappable PCBs: Feature socketed switch mounts, allowing easy replacement without soldering.
  • Flexible PCBs: Made from polyimide, commonly found in compact or ergonomic keyboards.
  • Hall Effect PCBs: Use magnetic fields instead of physical contacts, offering longer lifespan.

What are the Functions of a Keyboard PCB?

A keyboard PCB does more than just register keypresses. It manages power distribution, controls RGB lighting, and enables advanced features like macros and key remapping.

Many PCBs come with built-in support for QMK or VIA firmware, allowing users to program custom shortcuts and layouts.

What is a keyboard pcb? Keyboard PCB guide

Another key function is anti-ghosting and n-key rollover (NKRO), ensuring multiple keypresses register simultaneously. Some PCBs also integrate wireless capabilities, enabling Bluetooth connectivity.

How to Make a Keyboard PCB Hot-Swappable?

A hot-swappable keyboard PCB eliminates the need for soldering. Instead of fixed switch mounts, it uses hot-swap sockets that hold the switch pins securely. These sockets are soldered onto the PCB during manufacturing, allowing users to swap switches effortlessly.

Gamers and enthusiasts prefer hot-swappable keyboards because they offer customization without permanent modifications. If a switch malfunctions, replacing it takes seconds. However, these PCBs require careful handling, as frequent swapping can wear out the sockets over time.

Conclusion:

A keyboard PCB is the core of any mechanical or membrane keyboard. It controls everything from key registration to backlighting and custom macros. For high-quality custom keyboard PCBs, contact sales@bestpcbs.com

You may also like

PCB Design – Custom PCB for Charging and Battery Management
星期三, 5 3 月, 2025

In PCB design, custom PCBs for charging and battery management are circuit boards designed according to specific requirements to achieve efficient charging processes and precise battery management functions. This customized design usually involves multiple aspects such as battery characteristics, performance, user interface, reliability, environmental adaptability, compliance, and customized development of firmware and software.

PCB Design – Custom PCB for Charging and Battery Management

What is a BMS Circuit Board?

A Battery Management System (BMS) is an advanced circuit board that manages battery health, safety, and charging efficiency. It plays a critical role in preventing overcharging, over-discharging, overheating, and short circuits.

BMS technology is widely used in electric vehicles (EVs), renewable energy storage, drones, medical devices, and consumer electronics.

How to Design a BMS PCB?

Creating a BMS PCB requires careful planning. The key design factors include:

1. Battery Specifications

  • Define battery chemistry (Li-ion, LiPo, NiMH, Lead-acid).
  • Determine voltage range, capacity, and cell configuration.

2. Safety & Protection Features

  • Overvoltage & undervoltage protection to prevent damage.
  • Temperature monitoring to avoid overheating.
  • Short-circuit prevention for enhanced safety.

3. Battery Balancing

  • Passive Balancing: Discharges excess energy from cells to maintain balance.
  • Active Balancing: Transfers energy between cells for better efficiency.

4. Communication & Monitoring

  • I²C, UART, CAN, or SPI interfaces allow real-time monitoring.
  • Smart BMS systems can include Bluetooth or Wi-Fi for remote access.

5. PCB Layout Considerations

  • Wide copper traces for high-current flow.
  • Efficient thermal management to dissipate heat.
  • Proper grounding to minimize noise and interference.

A well-designed BMS PCB maximizes battery lifespan, performance, and safety.

What Are the Three Types of BMS?

Centralized BMS

  • A single PCB controls all battery cells.
  • Best for small to medium battery systems.
  • Cost-effective but less scalable.
PCB Design – Custom PCB for Charging and Battery Management

Distributed BMS

  • Each battery module has its own BMS unit.
  • Ideal for high-power applications (EVs, solar storage).
  • More reliable but higher cost.

Modular BMS

  • Uses separate BMS units for battery groups.
  • Flexible and scalable, commonly used in large-scale power systems.

Choosing the right BMS type depends on your battery pack size, complexity, and application needs.

What is the Difference Between PCB and BMS?

A Printed Circuit Board (PCB) is a general electronic platform, while a BMS is a specialized PCB designed for battery management.

A PCB supports various circuits, but a BMS is specifically engineered for battery safety, control, and balancing.

A BMS includes advanced protection features, while a standard PCB does not.

All BMS are PCBs, but not all PCBs are BMS.

What is the Difference Between PCM and BMS?

  • PCM (Protection Circuit Module) is a basic circuit that prevents overcharging, over-discharging, and short circuits.
  • BMS (Battery Management System) is an advanced system that also includes balancing, temperature control, and communication features.

A PCM is suitable for simple battery protection, while a BMS is essential for high-performance applications.

What is the Difference Between BAS and BMS?

  • BAS (Battery Automation System) controls multiple battery systems in large-scale applications.
  • BMS (Battery Management System) manages individual battery packs for safety and efficiency.
PCB Design – Custom PCB for Charging and Battery Management

A BAS is used in power grids, while a BMS is used in individual devices.

How to Customize a BMS PCB?

To create a custom BMS PCB, follow these steps:

1. Define Battery Requirements

  • Determine battery voltage, chemistry, and power needs.
  • Consider application-specific safety and efficiency features.

2. Select Components

  • Use high-quality MOSFETs, voltage regulators, and microcontrollers.
  • Include temperature sensors and balancing circuits.

3. Optimize PCB Layout

  • Keep power-handling components separate from signal paths.
  • Ensure proper heat dissipation and wide copper traces.

4. Prototype & Test

  • Simulate the design before manufacturing.
  • Perform real-world load testing for accuracy.

5. Mass Production Readiness

  • Ensure the design meets industry standards (IPC, UL, ISO).
  • Optimize for cost, durability, and efficiency.

A custom BMS PCB enhances battery reliability, longevity, and performance.

Do I Need a BMS for Each Battery?

The need for a BMS depends on battery type and usage:

  • Single-cell batteries may not require a BMS.
  • Multi-cell battery packs need a BMS for balancing and protection.
PCB Design – Custom PCB for Charging and Battery Management
  • High-power applications (EVs, energy storage) must have a BMS.
  • For longer battery life, stable performance, and safety, a BMS is always recommended.

Conclusion:

A custom PCB for charging and battery management is essential for safe, efficient, and long-lasting battery operation. A BMS PCB protects against damage, optimizes performance, and enhances safety.

For expert PCB design, prototyping, and assembly, contact sales@bestpcbs.com

You may also like

What is lead free solder? Lead-free solder vs lead solder
星期五, 28 2 月, 2025

Lead free solder is a welding material that does not contain lead or has a very low lead content. It is mainly composed of metal elements such as tin, silver, and copper, and is used to replace traditional lead-containing solder. It has the characteristics of environmental protection, safety, and reliability, and reduces the harm to the environment and human health.

What is lead free solder? Lead-free solder vs lead solder

In PCB manufacturing, the use of lead-free solder helps to improve the reliability and durability of products while meeting environmental protection requirements.

What is a lead-free solder?

Lead-free solder refers to a type of solder that doesn’t contain lead. Unlike traditional solder, which is often a blend of lead and tin, lead-free solder typically uses a combination of metals such as tin, silver, and copper.

Lead-free solders are designed to meet environmental and safety regulations, as lead is a toxic substance that can pose serious health risks when it’s exposed to people or the environment.

In simple terms, lead-free solder performs the same task as traditional lead-based solder: it melts and fuses two metal parts together to form a solid electrical connection. The key difference lies in the composition of the material itself.

With the growing demand for safer alternatives, particularly in electronics manufacturing, lead-free solder has risen to prominence.

What is the downside of lead-free solder?

Lead-free solder generally requires higher temperatures to melt compared to traditional lead-based solder. This can lead to potential issues during the soldering process, especially for components that are sensitive to heat.

Another challenge is the difference in workability. Lead-free solder tends to be a bit more difficult to work with because it has a higher viscosity, which means it doesn’t flow as smoothly as leaded solder. This can make it harder to achieve clean, precise solder joints, especially when using manual soldering techniques.

What is lead free solder made of?

Lead-free solder is primarily composed of tin (Sn), but it also contains other metals like silver (Ag), copper (Cu), bismuth (Bi), and sometimes indium (In) or zinc (Zn). The specific mix of metals varies depending on the exact type of lead-free solder used.

Commonly used lead-free solder alloy is a mixture of 96.5% tin, 3% silver, and 0.5% copper, often referred to as SAC305. This particular alloy is favored in electronics manufacturing due to its reliable performance and low risk of corrosion.

What is lead free solder? Lead-free solder vs lead solder

Other variations of lead-free solder may include bismuth or indium to lower the melting point or improve the flow characteristics. The choice of materials largely depends on the application and the specific requirements of the soldering process.

Why is lead not used in solder anymore?

The shift away from lead in solder is driven by health and environmental concerns. Lead is a toxic heavy metal that can cause serious health problems, especially when it is ingested or inhaled. Ingesting even small amounts of lead over time can result in lead poisoning, which can affect the nervous system, kidneys, and other organs.

As a result, organizations like the European Union and the Environmental Protection Agency (EPA) have put regulations in place that limit the use of lead in products like electronics and plumbing. These regulations, such as the RoHS Directive (Restriction of Hazardous Substances), require manufacturers to use alternatives to lead in many products, including solder.

Which is better, lead or lead-free solder?

The debate between lead and lead-free solder depends largely on the specific needs of the user. Lead-free solder has clear benefits in terms of health and environmental safety, especially when it comes to meeting regulations like RoHS.

However, lead-based solder is still preferred by some for certain applications because it has a lower melting point, which makes it easier to work with.

For general-purpose use, lead-free solder is often the better choice, particularly in industries where safety and compliance are top priorities.

However, for high-performance or delicate components, lead-based solder might still have the edge due to its superior ease of use, lower temperature requirements, and better flow characteristics.

What is the best lead-free solder?

There isn’t a single “best” lead-free solder because the right choice depends on your specific application. However, some of the most commonly used lead-free solder alloys include:

  • SAC305 (96.5% Tin, 3% Silver, 0.5% Copper): This is a popular choice in electronics and provides a good balance of mechanical strength and resistance to thermal cycling.
What is lead free solder? Lead-free solder vs lead solder
  • SAC405 (96% Tin, 4% Silver): Often used in more demanding applications, SAC405 has a slightly higher silver content, which can improve performance in high-temperature environments.
  • SnCu (99.3% Tin, 0.7% Copper): This solder is often used in applications where cost is a concern, as it’s cheaper than alloys that contain silver.

The “best” lead-free solder will depend on the specific requirements of your project, including the types of components being soldered, the temperature range, and other factors like workability and durability.

What does 60/40 mean in solder?

The 60/40 ratio refers to a blend of 60% tin and 40% lead, which is the classic composition for traditional lead-based solder. This mixture has been the standard for many years due to its relatively low melting point and excellent workability.

However, with the rise of lead-free solder for environmental and safety reasons, the 60/40 solder is being phased out in favor of safer alternatives.

What temp does lead free solder melt?

The melting point of lead-free solder depends on the specific alloy used. In general, most lead-free solders have a melting temperature that is higher than lead-based solder. For instance, SAC305 has a melting point of around 217-221°C (423-430°F), while traditional 60/40 lead-based solder melts at around 183°C (361°F).

This difference means that soldering with lead-free solder often requires higher temperatures and may need more careful temperature control to prevent overheating and damaging components.

Does lead free solder need flux?

Yes, lead-free solder requires flux to ensure that the solder adheres properly to the surfaces being joined and to remove any oxides or impurities.

What is lead free solder? Lead-free solder vs lead solder

Flux is essential in both lead and lead-free soldering, but it’s especially important when using lead-free solder. The higher melting temperatures and different composition of lead-free alloys make it even more crucial to use the right type of flux.

Flux helps to reduce the surface tension of the solder, allowing it to flow more easily and create strong, reliable connections. It also prevents the formation of oxides during the heating process, which could affect the quality of the solder joint.

Conclusion:

Lead-free solder is a safer, more environmentally friendly alternative to traditional lead-based solder. While it comes with certain challenges—such as higher melting temperatures and slightly more difficult workability—the benefits in terms of health and regulatory compliance make it the go-to choice in modern manufacturing.

If you need help selecting the best lead-free solder for your project or have questions about PCB assembly, don’t hesitate to reach out to us at sales@bestpcbs.com. We’re happy to assist you with all your soldering and PCB needs.

You may also like