pcb
Home > Blog

Archive for the ‘RF Board’ Category

What is the Rogers Printed Circuit Boards?

Monday, May 13th, 2024

Rogers Printed Circuit Board (short for Rogers PCB) is a printed circuit board (PCB) manufactured using a special high-frequency material produced by Rogers Corporation. These boards are designed to meet the demanding performance requirements of high-frequency electronic devices, especially in wireless communications, microwave technology, high-speed digital signal processing, radio frequency (RF) products, and applications requiring extremely high stability and low signal loss.

Rogers pcb made by best technology

What are the Main Features of Rogers Printed Circuit Board?

Rogers boards are made of a proprietary amide resin material, which gives them excellent dielectric properties, thermal stability and mechanical strength. Even in extreme working environments such as high temperature and humidity, high frequency and high speed, Rogers PCB board can maintain stable operation, showing its strong adaptability and reliability. Whether it is to improve the performance of electronic equipment, or to ensure the stability of the system, Rogers PCB board plays a vital role. Below are some main features and benefits of Rogers PCB.

  • Special substrates

Unlike traditional PCB materials based on glass fiber reinforced epoxy resins such as FR-4, Rogers PCBs are ceramic filled or based on high-performance substrates such as liquid crystal polymers (LCP), for example, RO4350B, RT/duroid series, TMM series and TC series. These substrates provide excellent electrical properties, such as low dielectric constant (εr) and low dielectric loss factor (Df), ensuring low signal loss and high-speed during transmission.

  • High frequency performance

Rogers PCB is particularly suitable for high frequency applications, because its material characteristics make the circuit board can maintain extremely low signal attenuation and stable electrical performance at operating frequencies up to tens or even hundreds of GHz. This makes them excellent in radar systems, satellite communications, 5G/6G network equipment, radio frequency identification (RFID) systems, high-speed data transmission interfaces (such as USB, PCIe) and other applications.

  • Temperature stability

Rogers material has excellent thermal stability and low coefficient of thermal expansion (CTE), which matches the thermal expansion rate of copper foil, helping to reduce the stress and deformation caused by temperature changes, ensuring the reliability of the circuit when working in a wide temperature range.

  • Mechanical strength and heat resistance

Due to the use of high-performance composite materials, Rogers PCB usually has high mechanical strength and good high temperature resistance, and can adapt to harsh environmental conditions and heat dissipation requirements.

  • Surface treatment

Rogers PCB can carry out a variety of surface treatments, such as gold plating, silver plating, organic welding film (OSP), etc., to meet the specific requirements of different applications for weldability, oxidation resistance, contact resistance, etc.

  • Multi-layer structure and fine traces

Rogers PCB can be made into single-layer to multi-layer structure, support high density interconnect (HDI) design, with fine lines (such as line width/line distance up to 0.3mm or smaller) and small aperture (such as 0.3mm), suitable for complex and precise high-frequency circuit design.

  • Low moisture absorption

Rogers material moisture absorption rate is very low, even in high humidity environment can maintain stable electrical performance, reduce the impact of moisture on dielectric properties, to ensure long-term reliability. In summary, Rogers printed circuit board is a high-end, professional-grade circuit board product, with its excellent high frequency characteristics, stable electrical performance, excellent temperature stability, and wide applicability, becoming the ideal choice to meet the demanding requirements of modern high performance electronic equipment and communication systems.

Why Use Rogers Printed Circuit Boards?

High frequency PCBs often need high performance with low signal losses, low electrical noise, or high board temperatures. To meet this need Rogers Corp. PCB materials are often used as they are cost effective vs. many of the alternatives. Here are some typical Applications for Rogers PCB:

All kinds of the Microwave equipment.

5G Cellular Base Station Antennas and Power Amplifiers

Automotive Radar and Sensors

RF Identification (RFID) Tags

Direct Broadcast Satellites for low noise block downconverter

Medical equipment such as monitoring instrument, cardiac pacemaker, MRI, etc.

Military and aerospace

Rogers pcb made by best technology

Rogers series is often used in RF PCBs with frequencies 6+ GHz and in high heat applications that need ceramic laminates and low signal losses. It may also be used to minimize electrical noise to meet stringent performance requirements.

In our next blog from Best Technology, we are going to share more information about different material from Rogers PCB. pls follow us and if you want to know more about the Rogers PCB, warmly welcomed to visited www.bestpcbs.com or email us, it would be our great pleasure to answer all the questions for Rogers PCB.

You may also like

What Are Stamp Holes and What’s the Design Standard About It?

Monday, May 6th, 2024

Have you ever seen several small holes on the rails of the PCBs or located at the board edges? They look like trails bites by mouse, do you know what they are? And what’s the function of these? This blog may make you sense about it.

What is Stamp Hole on PCB and its Purpose?

Stamp holes, also sometimes called breakaway holes or mouse bites, are small holes drilled in a row or array along the rails or edges of each circuit board within the panel. They look like the edges of a stamp, so people call it “stamp holes”.

Stamp hole is used primarily in the process of depanelized PCBs. De-paneling is the process of separating individual PCBs from a larger panel, which is a common method in PCB manufacturing to improve production efficiency and reduce costs. The larger panel makes handling and processing multiple PCBs easier during the manufacturing process. In some ways, panel also improves the utilization of the raw materials. Once the manufacturing steps are complete, the individual PCBs need to be separated for use in their corresponding devices. And these holes between the single PCBs can create a weak point along which the boards can be easily broken apart after manufacturing be completed.

stamp holes on pcb

Why Use Stamp Holes Expertise In PCBs?

It is possible to use stamp holes if the boards are abnormal shaped or round. The stamp hole is connected between each circuit boards, which mainly plays a supporting role and avoid PCB be scattered. Most commonly, they are used to create PCB stand-alone modules, such as Wi-Fi, Bluetooth, or core board modules, which are then used as stand-alone components placed on another board during PCB assembly.

The use of stamp holes allows for a relatively clean break along the separation line, but it may leave behind rough edges or require additional finishing steps to smooth out the remnants of the perforation points. This method of depaneling is a cost-effective solution and can be used for various types of PCBs, but it might not be suitable for very delicate circuits or when a perfectly smooth edge is required. In addition, V-cut and hollow connection strips also are the common depaneling ways for PCBs.

stamp holes on pcb

What are differences between Stamp Hole, V-cut and Hollow strip?

When preparing a panel for the manufacturing of multilayer PCBs, it’s essential to consider a method used to connect individual boards within the panel. As mentioned above, there are three connection methods for PCB technology, each serving different types of PCB designs and requirements. So, which one is the better or how to choose a suitable one for your project? Welcome to keep reading.

V-Cut (V-slot)

V-cut is the most common way to separate the PCBs during the circuit board manufacturing. It mainly utilizes for PCBs with straight edges or straight lines. This method involves cutting a V-shaped groove along the line where two PCBs are connected within the panel. When implemented, V-cuts leave a narrow gap (the width of the V-cut itself) between the boards. V-cut depth is an essential point during the process, make sure it has 1/3 depth on top and bottom side. The V-cut is especially suitable for standard, rectangular PCB designs, allowing for a clean and efficient separation of the boards once all other manufacturing processes have been completed.

Stamp Holes

For PCBs with unique or irregular shapes, stamp holes are often the preferred method of connection. Its process involves drilling multiple small holes in an array at the points where the individual PCBs connect within the panel. These holes create a perforated line that weakens the material enough to facilitate easy separation of the boards by applying minimal force, without compromising the integrity of the circuitry. But this way can only be used if you don’t have strict requirements for burrs on edges. And it is easy to damage the whole board if use improper approach.

Hollow Connecting Strips

Hollow connecting strips are used in scenarios where a very narrow strip of material is left to connect the boards within the panel. This method is particularly useful for PCBs utilizing half-hole (castellated holes) technology. The narrow strips maintain the alignment and integrity of the PCBs during the manufacturing process but can be easily removed or broken away to separate the individual boards. Hollow strip is less common but essential for specific designs and technologies.

Each of these connection methods has its specific applications, advantages, and considerations. The choice between V-cuts, stamp holes, and hollow connecting strips depends on the design of the PCB, the requirements of the manufacturing process, and the desired ease of separation post-manufacturing.

How to Add Stamp Holes on Your Circuit Board?

Designing stamp holes is a critical step in preparing your PCB for the depaneling process. This includes creating a series of small holes along the intended lines of separation between individual boards in a panel. Here’s a step-by-step guide to help you incorporate stamp holes into your PCB design effectively:

1. Understand the Purpose

Recognize that stamp holes are used to facilitate the manual separation of PCBs from a panel after the manufacturing process, minimizing the risk of damage to the board and its components.

2. Plan Your Layout

Placement: Decide where the stamp holes will be located on your PCB layout. They should be placed along the edges where the PCB will be separated from the panel.

Number and Spacing: The number of stamp holes and their spacing can significantly affect the ease of PCB separation. Typically, a distance of 0.5mm between holes and 1.0mm between centers of holes are used, but this may vary based on the PCB material and thickness.

3. Select the Hole Size and Quantity

The diameter of stamp holes usually ranges from 0.6 mm to 1 mm. The size may depend on your specific requirements and the capabilities of your PCB manufacturer. As for quantity, 5-8 holes in an array is good (always 2 arrays/rows), more also is available, it can be adapted based on your specific needs.

4. Arrangement of Stamp Holes

Two rows of stamp holes should be added at the edge of the PCB, extending slightly into the board. This design ensures that any burrs left on the board edge after separation will not affect the PCB’s overall dimensions. If there are traces or other critical components on the edge of the board, ensure that the stamp holes are placed to avoid damaging these elements during separation.

5. Design Using PCB Design Software

Use your PCB design software (such as Altium Designer, Eagle, or KiCad) to add the stamp holes to your design. This can usually be done by placing a series of via or pad holes along the separation lines.

Some software packages may offer tools to automate this process, allowing you to specify the number of holes, their spacing, and diameter, and then automatically place them along a line.

6. Consult with Your Manufacturer

Before finalizing your design, consult with your PCB manufacturer for any specific guidelines or requirements they have for stamp holes. This can include preferred sizes, spacing, and any additional considerations to ensure the depaneling process goes smoothly.

Provide detailed documentation of your stamp hole design to your manufacturer to avoid any confusion during the production process.

7. Review and Adjust

After adding the stamp holes to your design, review the layout to ensure that there is adequate clearance between the holes and any nearby components or traces. This is crucial to avoid damage during the separation process.

Adjust the size, spacing, and number of stamp holes as necessary to meet both your design requirements and the manufacturer’s capabilities.

stamp holes on RF pcb

In the design process, these considerations should be adjusted based on the specific PCB design and manufacturing requirements. Moreover, find a reliable PCB manufacturer to ensure these design details are accurately implemented is key to successfully fabrication.

Best Technology specializes in PCB manufacturing for more than 17 years, offering comprehensive PCB production and design services to over 200 countries worldwide. To ensure the best quality and fast delivery, we set up a strictly quality control system according to ISO9001 and equipped with advanced measured devices such as AOI, X-RAY, 2D, 3D measurement tools in our factory. We provide 24/7 hours service and commitment with a timely reply within 10 hours. We sincerely appreciate your any comments or consults, welcome to contact us at any time.

You may also like

How Can I Reduce and Optimize the Cost of My PCB in A Best Way? – Series 2

Saturday, October 28th, 2023

At our latest blog, may the readers have understood the factors that will affect the PCB price, or maybe one of your have put it into practice that get a price lower than your budget. However, people are always not satisfied by the existing situation. If this is bother you as well, keep reading since this time we are going to sharing some useful tips that enable to optimize your PCB price until to the best.

  • Reduce board complexity

It can be said that try to simplest your design/layout and make it easy to fabricate is the simplest way to reduce your PCB cost. The more complex and irregular the forms, the higher the cost. Just remember: for every circuit board, no need to maintain a fancy diagram to demonstrate its excellence, perform functionality correctly is enough.

  • Design it in right size and thickness

Design your board in right size doesn’t means make it smaller as possible. You must know, if your design is complex and layouts are density, that means maker need to spend more time to assemble them. Highly compact sizes are always expensive, don’t skimp when it counts. Otherwise, more money will be spent to afford what you saved.

And in theory, the more layers and thickness the board, the more cost that manufacturer spend. Numerous layers in the PCB will have an influence for holes and diameters. It is recommended that if thinner thickness is enough, then just do it. 

  • Shapes, holes and rings should be regularly

Normally, keep the PCB as square or rectangular shapes is cheaper than irregular shapes like pentagon.  And large holes and rings enable to smooth the production run and easy to create. For smaller holes and rings means the driller must be smaller and delicate control.

  • Consider volume and choose manufacturer

In our last blog, we emphasize manufacturers will set a minimum order quantity (MOQ), it is common in this industry. So, consider your volume and check multiple quantities before ordering can help to recognize which one is the most cost-effective.

During the evaluation period, talk to your suppliers as soon as possible, knowing more about the material specifications, technical and PCB tolerances. A wrong choice will lead to much time waste and some unnecessary cost. This is we call “trial and error cost”. Try to make all things are clear and correct before production.

  • Pick the best vias

There are totally three types of vias in PCB: though-hole, blind, buried. The through hole can be passed through the whole board, while blind vias is created from top or bottom side to the middle of the board without through to bottom or top side. Buried vias, just as its names, it is buried inside the boards and we can’t see it by naked eyes.

Obviously, through hole is cost performance than other two vias, try to use more instead of blind or buried vias enable to decrease your cost. In additionally, blind and buried vias are always necessary in HDI PCB and RF board, otherwise, you don’t usually use them.

  • Make sure all SMT components on the one side

Trying to make all the surface mounted (SMT) components on the one side of circuit board if possible. In this way, assembler can finish the SMT process in one-time, so that can save much manufacturing time and cost. But if the components are distributed on both sides, it is needed to assemble two times, that is top side first – bottom side second (or sometimes bottom first).

  • Select easily replaceable component parts

It is assumed that one of part on your circuit becomes obsolete, then you must search for replaceable part or update your design if you would like to continuedly use this board. As an extensive experienced PCB manufacturer, we strongly recommend that select components that has standard dimension, so that it is easy to match alternative one.

In addition, visit some manufacturer’s website carefully to see if any components are marked as “obsolete” or “not recommended for new designs” before finishing your design. This enables to avoid secondary update.

  • Follow manufacturer’s PCB fabricate standards

Understand and follow manufacturer’s fabricate standards can keep your unit PCB price in a relative lower cost. When designing a new project, please make sure to following below tips.

  1. Use standard stack-up with standard materials.
  2. Design 2-4 layers PCB if possible.
  3. Keep your minimum line width and spacing within the standard spacing.
  4. Avoid adding extra special requirements as much as possible.
  • Use SMT components as possible

Choose surface mounted (SMT) components instead of through hole (THT) component whenever possible. SMT and THT are almost treated as separated manufacturing processes. Hence, if all the THT components can be replaced by mounted parts, the THT process will be eliminated completely. It is not only decreasing the manufacturing cost, but also reducing delivery time. Of course, it is not always possible, but it’s worth trying.  

Whatever decisions you make, the best solution is to consult and discuss with your suppliers. They be always to give you the best one that can save your money and meet your requirements as well. Meanwhile, if you don’t believe the suppliers, you are welcome to reach us. We promise that we can give you a most favorable price and high-quality product.

You may also like

What Factors Affect the PCB Board Price? How to Keep the Best Price? – Series 1

Saturday, October 28th, 2023

For each development engineer or purchaser, how to keep the cost within the budget is a most irksome and irritating assignment while the PCB has the good quality and enable to perform desired function. They need to understand the computation rule and calculate the developing cost. So, it is worth to knowing the factors that affect the printed circuit board price, and it is a must learn course for every engineers. Herein, Best Technology is going to dissect the factors affect the cost of PCB, let’s move on!

What affects the cost of a PCB?

Drives the cost of PCBs are numerous, we can see from the PCB itself, for example, circuit board substrate materials, the external factors such as the manufacturing difficulties, the whole order quantities and some other special requirements that from designers.

Here, we listing some basic parameter factors which drives the whole cost of a PCB.

  • PCB substrate material

The substrate of PCB board refers to the material used in the non-conductor part of the circuit board, mainly FR4, glass fiber, epoxy resin, polyimide, copper, aluminum and so on. In the PCB manufacturing, glass fiber is widely used in the manufacture of double-sided circuit board and multi-layer board, while epoxy resin and polyimide are used in the manufacture of high-density multi-layer board. Among them, copper substrate is most expensive material. No matter what kind of materials, all of them shall be calculated according to the real-time international price.

  • PCB size (panel and single pcs)

PCB size will determine the price of PCBs, this is for sure. Generally speaking, with a same number of PCB layers, the smaller the PCB size, the cheaper the cost. Because during calculating cost, vendors will consider the utilization rate of raw materials. Make sure the highest utilization, the cost for both purchaser and vender will be best. The raw material of PCBs is commonly 1200mm*1200mm, or 1220mm for special specifications, when the utilization achieves 90% or above, this is the best.

So, how to improve the utilization of raw materials? Normally, manufacturers will optimize the working files (WF) from single size to panel size, and then material will be cut according to the panel files. But if the panel size is not suitable, then there will be a lot of waste edges of raw material in the cutting process, and generally this will be added into your PCB price. So that the unit PCB price will be more expensive. In another word, if you PCB size is well-suited, then it is good for PCB manufacturer and yourself. And at this time, the utilization will be the highest and your PCB cost is the cheapest as well.

  • Line width/spacing

To a certain extent, as long as you are following the PCB design rules, the PCB price will not too high. However, if your design is complex and the line width is extreme thin, then the price will increase since it is difficult to control during manufacturing.

  • PCB layers

According to the IPC standard, PCBs can be classified to single-layer PCB, double sided PCB and multilayer PCB. For layer count over than 2 layers, we called it as Multilayer PCBs, such as 4 layers PCB, 6 layers PCB. For FR4 PCB, we can make up to 32layers.

Due to the manufacturing process and some unpredictable assembling cycles, the more the layers, the more expensive it is. (The price of single side PCB is the similar to double sided PCBs.)

  • Solder mask ink color

In the past, it is no doubt that you will spend more if you want every color expect green. But now things are changeable. Most colors are available at no or very little extra cost, which usually only occurs for unique requests such as matte tones.

  • PCB copper foil thickness

The weight of copper foil depends on the successful utilization of the material. Thicker copper is more expensive and comes with additional manufacturing difficulties and expenses. You may also have to fill the holes with copper foil to connect layers. In addition, heavier copper means you need to spend more cost in shipping. Let’s take a simple example, for aluminum core PCB and copper core PCB, in the same volume and quantities, copper core PCB stands out for expensive shipping cost since it has thicker copper and heavier weight.

  • PCB surface treatment

Surface treatment is a method that using for protecting the surface from corrosion and improve the solderability. Usually, in consideration of environmental friendliness, vendors can use a couple of gold or silver to achieve further safety for use in some applications.

The commonly used surface treatment methods include OSP, IMMERSION SILVER, ENIG, ENEPIG and HASL (LF). Among them, the price is ENEPIG>ENIG>IMMERSION SILVER>OSP>HASL. You can calculate the PCB board price according to the surface treatment method and gold thickness.

  • Quantity and lead time

When developing a new project, almost of companies would like to make prototypes first and ask for a sample quotation. However, some PCB manufacturers will set the minimum order quantity, the smaller the quantity, the higher cost the PCB board. Please make sure to check the price for different amount before placing an official order.

Meanwhile, the delivery time request also will affect the whole price in a certain. And certainly, the price of quick turn order and expedited service will higher than normal order.

  • Other special requirements (impedance, IPC standard)

To ensure the stable transmission of circuit board signals and improve the quality of signal transmission, designers and engineers will ask for impedance control for the traces. This can be seen as special requirements, so it will add a few extra prices. And the required IPC Criteria is a factor as well. Normally, if customer does not have other request, we will default use IPC class II. III level will more expensive.

Above all are the mainly factors that affect the price composition for a printed circuit board. When evaluating your PCB cost, making them in your consideration is best.

PCB and PCBA supplier that can save cost for you – Best Technology

When you are seeking for a reliable PCB and PCBA supplier, I would like to recommend Best Technology to you. Best Tech offers one-stop service including raw material purchasing, PCB making, components searching, assembly, box building and package out of warehouse. What we can provide is not limited to PCB, but also metal core PCB, ceramic PCB, flexible PCB, rigid flex PCB, special PCB like HDI PCB, heavy copper PCB, extra thin PCB and so on. During the 17 years, the Best Technology company has served include medical industry, consumer electronics, new energy, automotive electronics, aerospace, military and others.

Could it be said that you are searching for a PCB supplier that can provide favorable price that lower than market? If this is true, please go ahead and reach us today, let’s talk about more PCB information right now and start our business trip together. We promise, when you decide to take the first step, and we’ll take the remaining 99 steps.

You may also like

What is RF PCB board?

Tuesday, November 23rd, 2021

You may have ever heard of RF PCB, but do you know What it is and What are the characteristics of these kinds PCB?

Today let us make a simple introduction for it.

RF PCB, means radio frequency PCB. People also called these PCB High frequency PCB, it is for the PCB with a higher electromagnetic frequency, and it is used on the products field with high frequency. (Frequency greater than 300MHZ or wavelength less than 1 meter) and microwave (frequency greater than 3GHZ or wavelength less than 0.1 meter). It is made by microwave substrate with common PCB manufacturing process or with some special way to make.

High-frequency boards have very high requirements for various physical properties, accuracy, and technical parameters, and are often used in communication systems, automobile anti-collision systems, satellite systems, radio systems and other fields.

How can we know which PCB materials are suitable for making the RF boards?

When evaluating the high-frequency characteristics of a substrate material, the key to its investigation is the change in its DF value (Dissipation Factor).

For substrate materials with high-speed and high-frequency characteristics, in terms of changing characteristics at high frequencies, there are two distinct types of general substrate materials: one is that with the change of frequency, its (DF) value changes very little. There is another type that is similar to the general substrate material in the range of change, but its own (DF) value is lower.

The common epoxy resin-glass fiber cloth-based materials (FR4), the DK value at the frequency of 1MHz is 4.7 and the change of the DK value at the frequency of 1GHz is 4.19. Above 1GHz, the change trend of its DK value is gentle. The change trend is that as the frequency increases, it becomes smaller (but the change is not large). For example, at 10GHz, the DK value of FR-4 is generally 4.15. The substrate material with high-speed and high-frequency characteristics changes in frequency. When the DK value changes slightly, the DK value keeps changing in the range of 0.02 when the frequency changes from 1MHz to 1GHz. Its DK value tends to decrease slightly under different frequency conditions from low to high.

On the other hand, the thermal expansion coefficient of the high-frequency circuit board substrate and the copper foil must be the same. If they are inconsistent, it will cause the copper foil to separate during the cold and hot changes. Secondly, in a humid environment, the water absorption rate must be low, and high water absorption rate will cause dielectric constant and dielectric loss when wet. In general, the heat resistance, chemical resistance, impact resistance, and peel resistance of the high-frequency sheet must be good.

The following are several commonly used high-frequency and high-speed PCB boards we have summarized:

Rogers: RO4003, RO3003, RO4350, RO5880, etc.

TUC: Tuc862, 872SLK, 883, 933, etc.

Panasonic: Megtron4, Megtron6, etc.

Isola: FR408HR, IS620, IS680, etc.

Nelco: N4000-13, N4000-13EPSI, etc.

Other materials like Arlon, Teflon, Taconic are also good for the manufacturing of RF PCB boards.

If you have any question for RF pcb, welcome to send your request and question to discuss more.

You may also like

What’s RT/duriod 5880?

Tuesday, December 1st, 2020

For PCB materials, you may have ever heard about many different kinds of materials such as the materials of FR4, Aluminum, Copper base and ceramic base.

But do you know what the duriod 5880 materials is?

Actually duriod 5880 is a kind of materials of the Rogers, it is the materials which is used for high frequency circuit board. RT 5880, which is famous for its low dielectric loss, low moisture absorption, and stable dielectric constant. The PCB made of duriod 5880 can be widely used in airborne and ground-based radar systems, millimeter wave applications, and space satellite transceivers.
Different with other kinds materials, the color of the RT 5880 materials is black.

Why this material can be used in such high end field? Let’s see below to know more information.

Excellent dielectric properties:
RT/duroid 5870/5880, as a new generation of high-frequency laminate, is made of polytetrafluoroethylene composite material (PTFE). At the same time, glass microfibers are randomly distributed in the material, which provides the greatest strength during the production and application of the circuit board.

High-frequency circuit design has strict requirements on the dielectric constant of the printed circuit board. RT/duroid 5880 has an ultra-low dielectric constant and remains the same in a very wide operating frequency range.

At 10GHz operating frequency, the measured dielectric constant is only 2.33/2.2, which is significantly lower than similar materials on the market. Therefore, from the perspective of performance parameters and production costs, the board is more suitable for high-frequency application design than similar products.

At the same time, under the same standard (f=10GHz), and the dielectric loss of the RT5880 is only 0.0012/0.0009. The extremely low dielectric loss makes it very suitable for high-frequency and the field of wide-band applications which requiring minimal dispersion and low loss.

In addition, the extremely low moisture absorption rate makes it an ideal choice for applications in high humidity environments. The moisture absorption rate of RT/duroid 5880 is only 0.02%, so it can meet the strict requirements of mechanical reliability and electrical stability in the complex microwave structure design, and it is also suitable for applications in high humidity environments.

With the continuous improvement of the operating frequency of high-frequency circuits, the requirements for the dielectric constant and dielectric loss of the circuit board are becoming more and more stringent. The excellent performance of RT/duroid 5880 in these two aspects can significantly improve the design of high-frequency circuits. Definity, improve circuit performance.

Easy to process and install
In this high-frequency design, in order to meet the requirements of electromagnetic shielding and compact design, printed circuit boards are often installed in various irregularly shaped cavity structures. Therefore, the PCB board must be designed in different shapes and suitable for production and Installation.

For RT/duroid 5880 laminate, which is easy to cut, trim and good for PCB manufacturing.

At the same time, it can resist all the solutions and chemical agents used in the process of etching and plating through holes, and it has a good performance of the cold and heat resistance.

The composite material RT/duroid 5880 can be covered with a laminated copper foil for some key electrical applications, and brass plates or copper can also be used as required.
Usually laminates of the RT/Duriod 5880, it can make double-sided copper clad with thicknesses ranging from 1/2 oz. to 2 oz./ft2 (8.5~70 μm) to meet most custome’s requirements for the thickness of copper foil.

Our company has focus on the PCB fabricationi for more than 15 years, we can make PCB with Rogers PCB with RT/Duriod 5880, as well as RO4003C and RO4350B with different thickness.
If you are interesting to know more and your PCB also want to made of RT/Duriod 5880, please feel freely to contact us for more information related.

You may also like