Home > Blog

Archive for the ‘RF Board’ Category

What is a PCB Board? – Best Technology
Saturday, July 13th, 2024

In our daily life, the electronics has been gradually infiltrated our lives. Between them, the PCB board plays an important role in it, and we must say, PCB is the foundational element of electronics. From the simplest gadgets to the most complex machinery, PCBs play a crucial role.

What is a PCB Board?

A printed circuit board (PCB) is an electronic that uses metal conductors to create electrical connections between components. Generally, a PCB is a flat, laminated composite made of non-conductive substrate materials with conductive pathways etched or printed onto it. These pathways, also known as traces, enable the electronic components mounted on the board to communicate with each other.

What is a PCB Board?

PCBs are designed to support and electrically connect various components such as resistors, capacitors, diodes, and integrated circuits. The intricate network of copper tracks forms circuits that dictate the device’s functionality. PCBs can range from simple single-sided boards used in basic electronics to complex multi-layered structures found in advanced applications.

Common PCB Structure

A PCB’s structure is composed of several key layers, each serving a distinct purpose. Here is a detailed breakdown of these layers:

Substrate (Base Material)

The substrate, usually made of fiberglass (FR4), provides the board with its rigidity and thickness. It is the foundational layer upon which all other materials are built.

Copper Layer

This conductive layer is typically made of copper foil. For single-sided PCBs, the copper layer is only on one side of the substrate, whereas double-sided and multi-layer PCBs have copper layers on both sides or between multiple layers of substrate.

Solder Mask

The solder mask is a protective layer applied over the copper traces to prevent oxidation and accidental short-circuiting. It insulates the copper traces and leaves the component pads exposed for soldering. The green color commonly associated with PCBs comes from this layer, though it can also be found in other colors like red, blue, black, and white.


The silkscreen layer is used to add labels, symbols, logos, and other markings to the PCB. This layer helps in identifying component locations and orientations during assembly and troubleshooting.

Components and Connectors (PCBA)

Components such as resistors, capacitors, diodes, and integrated circuits are soldered onto the PCB. Connectors allow the PCB to interface with other boards, power supplies, and external devices.

What is a PCB Board?

How Many Types of PCB?

Single-Sided PCBs

These are the simplest types of PCBs, with copper on only one side of the board. You’ll find them in basic, low-cost electronics like calculators, radios, and power supplies. They’re easy to design and manufacture, which keeps costs down and makes them great for straightforward applications.

Double-Sided PCBs

These boards have copper layers on both sides, allowing for more complex circuits. They’re common in more sophisticated electronics like amplifiers, power monitoring systems, and HVAC systems. With increased circuit density and flexible design options, they can handle more complex tasks.

Multi-Layer PCBs

When you need to pack in a lot of circuits, multi-layer PCBs are the way to go. They consist of three or more layers of copper, separated by insulating layers. You’ll see these in high-tech devices like computers, servers, medical equipment, and aerospace electronics. They offer high circuit density, reduced size and weight, and better signal integrity.

Rigid PCBs

Made from solid, inflexible materials like fiberglass, rigid PCBs keep their shape and provide strong support for components. They’re durable and used in everything from simple toys to complex industrial equipment.

Flexible PCBs

These are made from flexible plastic materials like polyimide, allowing them to bend and flex. Perfect for wearable electronics, flexible displays, and compact devices where space is tight. They’re lightweight, can fit into small, irregular spaces, and can handle being bent repeatedly.

Rigid-Flex PCBs

Combining the best of both rigid and flexible PCBs, these are great for devices that need both stability and flexibility, like smartphones, cameras, and medical devices. They save space, reduce the need for connectors and interconnections, and improve reliability.

High-Frequency PCBs

Designed to operate at frequencies above 1 GHz, these are used in communication systems, microwave technology, and high-speed devices. They provide low signal loss and high performance, making them crucial for advanced communication technologies.

Ceramic PCBs

Using ceramic as the substrate material, these PCBs offer excellent thermal conductivity and stability. They’re perfect for high-power applications and environments with extreme temperatures, like LED lighting, power electronics, and aerospace systems. Ceramic PCBs ensure reliable performance in harsh conditions.

Metal Core PCBs

Featuring a metal core, usually aluminum or copper, these PCBs improve heat dissipation. They’re used in high-power applications where efficient thermal management is crucial, such as LED lighting, power supplies, and automotive electronics.

Special PCBs

Bus Bar PCBs

These integrate bus bars for high-current applications, ensuring efficient power distribution and minimal voltage drop. They’re used in heavy-duty power supplies, electric vehicles, and industrial machinery. Bus bar PCBs provide robust and reliable connections for high-power systems.

What is a PCB Board?

Heavy Copper PCBs

With thicker copper layers, typically 3 ounces per square foot or more, these PCBs can handle higher currents and enhance thermal management. They’re used in power distribution, automotive, and industrial applications where durability and performance are critical. Heavy copper PCBs ensure reliable operation under high-stress conditions.

What is a PCB Board?

HDI (High-Density Interconnect) PCBs

These feature finer lines and spaces, smaller vias, and higher connection pad density. They’re used in advanced electronics like smartphones, tablets, and medical devices where space and performance are paramount. HDI PCBs enable miniaturization and improved electrical performance.

Extra Thin PCBs

Designed with minimal thickness, these PCBs are perfect for fitting into compact and lightweight devices. You’ll find them in flexible displays, wearables, and miniaturized electronic gadgets. Extra thin PCBs allow for innovative design solutions and space-saving configurations.

What is a PCB Board?

RF (Radio Frequency) PCBs

Optimized for high-frequency signals, these are used in communication devices, antennas, and microwave applications. They’re designed to minimize signal loss and interference, ensuring optimal performance in wireless communication systems.

High Tg PCBs

These have a high glass transition temperature, making them suitable for high-temperature environments. Used in automotive, aerospace, and industrial applications, high Tg PCBs maintain structural integrity and performance at elevated temperatures.

Impedance Control PCBs

These are designed to maintain consistent impedance for high-speed signal transmission. They’re used in communication devices, high-speed digital circuits, and advanced computing systems. Impedance control PCBs ensure signal integrity and reduce signal loss and reflection.

What is a PCB Board?

Why Are PCB Boards So Expensive?

Material Quality

High-grade materials like FR4 (fiberglass), ceramics, and high-quality copper foil are used to ensure durability and performance. These materials are essential for withstanding environmental stress and ensuring reliable operation, but they are expensive. For example, ceramic substrates can cost up to 10 times more than standard FR4 materials due to their superior thermal conductivity and electrical properties.

Complexity of Design

Multi-layer PCBs and advanced designs such as HDI (High-Density Interconnect) boards require complex manufacturing processes. The process involves precise alignment of layers and sophisticated techniques like laser drilling for micro-vias. The added complexity increases the production costs significantly. For instance, a standard 4-layer PCB might cost $50 per square meter, while a 12-layer HDI PCB could cost over $200 per square meter.

Precision and Technology

Manufacturing high-precision PCBs involves advanced machinery for etching, drilling, and plating. This machinery requires significant investment, and the skilled labor needed to operate it adds to the cost. The precision required in the production process ensures that the PCBs meet exacting standards, crucial for high-performance applications. A single advanced PCB drilling machine can cost upwards of $500,000.

Volume of Production

Smaller production runs generally have higher costs per unit because the setup and tooling expenses are spread over fewer units. For example, a low-volume production run of 10 PCBs might cost $100 per board, whereas a high-volume run of 10,000 boards might reduce the cost to $10 per board due to economies of scale.

Testing and Quality Assurance

Rigorous testing, including electrical, thermal, and functional tests, ensures that the PCBs meet strict performance standards. This testing process is vital to ensure reliability, especially in critical applications like medical devices and aerospace. Quality assurance processes can add 20-30% to the overall production cost, but they are essential for maintaining high standards.

What is the Difference Between PCBA and PCB Board?

The terms PCB and PCBA are often used interchangeably, but they refer to different stages of the board’s life cycle. The PCB is the bare board itself, with no electronic components attached. It consists of a non-conductive substrate, copper traces, solder mask, and silkscreen. A PCB serves as the foundation for assembling electronic components.

On the other hand, a PCBA (Printed Circuit Board Assembly) is a PCB that has undergone the assembly process, where all necessary electronic components like resistors, capacitors, diodes, and integrated circuits are soldered onto the board. Essentially, a PCBA is a functional circuit board ready for use in electronic devices. The transition from a PCB to a PCBA involves component placement, soldering, and quality testing, transforming the bare board into an operational assembly. Below is a typical PCBA product for your reference.

What is a PCB Board?

What is PCB Board Common Use?

PCB boards are existing in everywhere what we live, for example, the global smartphone market, which relies heavily on PCBs, was valued at approximately $520 billion in 2020. Here are some common applications that PCB used in:

Automotive Industry

In the automotive sector, PCBs are used in engine control units, infotainment systems, and advanced driver-assistance systems (ADAS). These applications enhance vehicle performance, safety, and connectivity.

Medical Devices

PCBs are integral to medical devices such as diagnostic equipment, patient monitoring systems, and implantable devices. They ensure precise and reliable operation, which is critical for patient safety and effective treatment.

Industrial Applications

PCBs are used in control systems, machinery, and power distribution units in industrial settings. They provide robust and durable solutions capable of withstanding harsh conditions and continuous operation.


In telecommunications, PCBs are essential in routers, switches, and communication devices, ensuring efficient and reliable data transmission. As the demand for faster and more reliable communication networks grows, so does the need for high-quality PCBs.

Why Are Circuit Boards Green?

The characteristic green color of most PCBs comes from the solder mask, a protective layer applied over the copper traces to prevent oxidation, short-circuiting, and to protect the board during soldering.

The green color is traditional, largely due to historical reasons and practical benefits. Green solder mask provides a good contrast against the white silkscreen and the shiny copper traces, making it easier for technicians to inspect and identify components during assembly and troubleshooting. Additionally, green solder mask was one of the first colors to be developed and standardized in the industry, leading to its widespread adoption. However, PCBs are not limited to green; they can also be found in other colors such as red, blue, black, and white, depending on the specific requirements and aesthetic preferences of the project. The choice of solder mask color does not affect the performance of the PCB, but green remains popular due to its well-established manufacturing process and visual advantages.

How to Get Started with Best Technology?

Here at Best Technology, we are experienced in designing all types of PCBs, including standard rigid PCBs, special PCBs, and irregular PCBs. We can design and develop PCBs according to customer specification and offer suggestions on the right materials for your project.

We provide the full series of PCB manufacturing, from the initial PCB design, PCB layout, to custom PCB fabricate, PCB assembly, box building and so forth. By the way, we have our own factory in Vietnam, that means we can ship out the PCBs directly from Vietnam.

Welcome to contact us when you want to get a quote!

You may also like

High Speed PCB: How to Design It?
Wednesday, July 3rd, 2024

In today’s tech-driven world, creating efficient high speed PCB (Printed Circuit Board) is critical for ensuring devices can handle rapid data transfer without issues. These high speed PCBs are popular in the wireless devices which needs high signal transfer. Crafting high-speed circuits requires careful planning and precise execution to maintain signal quality and overall performance. In this blog, we introduced the basics of high-speed PCB design, offering practical tips and insights into the best materials and techniques for high-frequency applications.

What is a High Speed Circuit PCB?

High-speed PCB is a circuit board that can support signal transmission. High-speed signals usually refer to signals with frequencies higher than 50MHz, such as high-speed digital signals, high-speed analog signals, etc. These fast transitions can introduce challenges like signal reflections, electromagnetic interference (EMI), and crosstalk, which can disrupt performance if not properly managed.

Additionally, these signals will be affected by board materials, layout, wiring and other factors during transmission. Therefore, a specially designed circuit board is required to ensure the integrity and reliability of the signal. Here is a 4 layers high speed PCB for Iradar device with 50ohm single-ended impedance control.

high speed pcb for Iradar

Features of High-Speed PCB

  • High frequency
  • Low permittivity and low loss factor
  • Multilayer design
  • Strict impedance control
  • High-precision manufacturing
  • Low noise characteristic
  • High density circuit layout (micro-vias)
  • High performance

What is Considered High-Speed PCB Design?

High-speed PCB design focuses on managing the complexities that come with high-frequency signals and fast switching. Key considerations include:

– Signal Integrity: Ensuring signals travel without distortion or loss.

– Power Management: Distributing power effectively to minimize noise and voltage drops.

– Heat Handling: Managing heat from high-speed components to prevent overheating.

– Impedance Matching: Keeping impedance consistent to reduce signal reflections and loss.

– Differential Pair Routing: Reducing EMI and crosstalk by routing complementary signal pairs together.

This type of high speed pcb design requires a solid understanding of electromagnetic principles, advanced simulation tools, and precise manufacturing techniques. For those new to high-speed PCB design, Best Technology offers expert guidance and solutions.

What’s the Best Material for High-Speed PCB Design?

Choosing the right material for high speed pcb is vital for maintaining signal integrity and achieving optimal performance. The material impacts the board’s dielectric constant (Dk), loss tangent, and overall signal quality. Common materials include:

– FR4: Widely used but not ideal for very high frequencies due to higher loss tangent.

– Rogers (RO4000 series): Preferred for high-speed designs thanks to its low dielectric constant and loss tangent.

– Teflon: Excellent for high-frequency applications but more expensive and harder to process.

Selecting the appropriate material ensures the PCB can handle high-speed signals without compromising performance.

Where is the High-Speed PCB Commonly Used in?

High-speed circuit boards are widely used in signal transmission applications, the typical fields are including:

1. Communication equipment – such as 5G base stations, optical fiber communication equipment, etc.

    2. Data center – like high-performance computing, storage servers, etc.

    3. Consumer electronics in our daily life – high-end smartphones, tablets, gaming devices, etc.

    4. Aerospace and military – high speed are always used in high-end devices. For example, radar, navigation systems and other equipment with high reliability requirements.

    What is the 3H Rule in High Speed PCB Design?

    The 3H rule is a guideline suggesting that signal traces should be spaced at least three times the height of the dielectric (3H) between the signal layer and the adjacent ground or reference layer. This helps minimize crosstalk and maintain signal integrity, particularly for high-speed digital signals with rise times of 1 ns or less. Key aspects include:

    – Trace Spacing: Keeping traces apart by at least 3H reduces electromagnetic coupling and interference.

    – Signal Integrity: Adequate spacing helps maintain clear signals in high-speed circuits.

    – Effectiveness: This rule is especially beneficial for fast digital signals, reducing the risk of crosstalk and interference.

    For instance, if the dielectric height between the signal layer and the reference layer is 0.2 mm, traces should be at least 0.6 mm apart to follow the 3H rule.

    How to Design a High-Speed Board?

    Designing a high-speed PCB involves several strategies to ensure effective signal transmission, power distribution, and minimal EMI. Here’s a step-by-step approach:

    Component Placement and Layer Stack-Up

    Place high-speed components to minimize signal paths and interference. Group related components to simplify routing. In addition, create a layer stack-up that supports controlled impedance and reduces signal loss. Use ground planes between layers for a return path for high-frequency currents.

    Trace Routing and Impedance Control

    Keep high-speed traces short and direct, avoiding right-angle bends. Use microstrip or stripline configurations for controlled impedance and minimal noise. For impedance control, calculate and ensure consistent impedance for traces. Use differential pair routing for high-speed signals to reduce EMI and crosstalk.

    High Speed PCB: How to Design It?

    Power Distribution and EMI Mitigation

    Use decoupling capacitors near high-speed components to filter noise and stabilize the power supply. Design a robust power distribution network to minimize impedance and ensure stable voltage. And employ proper grounding and shielding techniques. Route high-speed signals on inner layers between ground planes to reduce EMI and provide a consistent return path.

    Simulation and Testing

    Use signal integrity analysis tools like SI or PI to simulate the PCB layout, predicting signal behavior and identifying potential issues. Analyze aspects like eye diagrams to assess signal quality.

    High-speed PCB design is a complex but rewarding endeavor that ensures your electronics perform efficiently in high-frequency environments. By understanding the fundamentals and applying the right techniques and materials, you can create robust, high-speed boards. Best Technology is here to assist you with expert advice and solutions for your high-speed PCB needs.

    You may also like

    Industrial Motherboard Design, Industrial PCB Case Sharing
    Monday, June 24th, 2024

    Best technology engaging in the PCB manufacturing and PCB design for more than 17 years. With a strong R&D team, we can provide customers with fast and valued PCB design solutions. Here is one of our industrial motherboard design & industrial PCB case sharing for your reference. If you want to get your own industrial PCB design, welcome to contact us.

    A mITX architecture industrial control motherboard

    [1] Intel Xeon E3, Core™ i7/i5, Celeron G3900E processors

    [2]:2x DDR4 SODIMM 2133 MHz (up to 32 GByte)

    [3]:4x SATA Gen 3.0

    [4]:1x PCIe x16 (Gen 3)

    [5]:2x USB 3.0 (Internal) + 1x USB 3.0 (Client) + 2x USB 3.0 (Rear I/O) + 2x USB 2.0 (Rear I/O) +

    2x USB 2.0 (Front Header) + 1x USB 2.0 (mPCIe)

    Industrial PCB Design Considerations

    • Control the length of the circuit: Minimize the length of the circuit, especially the key signal lines, to reduce signal attenuation and delay.
    • Avoid sharp angles and right angles: Right angles and sharp angles should be avoided when wiring, and rounded or 45 degree angles should be used as far as possible to reduce signal reflection and impedance discontinuity.
    • Line width: Determine the line width according to the current size and thermal requirements to ensure the reliability and stability of the circuit.
    • Inter-layer wiring: Rational use of multi-layer PCB inter-layer wiring, such as the signal line on the inner layer, power and ground wire on the outer layer.
    • Impedance control: For high-speed signals, it is necessary to control the line impedance to ensure signal integrity, and carry out impedance matching design if necessary.
    • Avoid cross and parallel wiring: Try to avoid cross and parallel wiring of signal lines to reduce crosstalk and electromagnetic interference.

    Contact us if you have any questions and inquiry about industrial PCB design projects.

    You may also like

    What Are the Advantages of Using Bus Bar PCB?
    Friday, June 14th, 2024

    In the design of electronic devices and systems, power distribution and heat dissipation management are key factors. Bus bar PCB, as an efficient solution, is particularly outstanding in these aspects. In this article, we would like to introduce the advantages of Bus bar PCB and its applications in different industries.

    What Is A Bus Bar PCB?

    At the beginning, we should know what a bus bar PCB is. The Bus bar PCB is a special and newest design that integrates the FR4 material and metal alloy into a whole product, which allows the current transfer path into the circuit board. Due to the current carry capacity and special shape, it also called busbar PCB, embedded bus bar PCB, extruded copper PCB, copper inlay PCB, copper extrusion PCB.

    bus bar pcb

    Bus bar circuit board provide a more compact and efficient means of current distribution than traditional wires and cables. This design improves the overall performance of the electronic system by reducing inductance, increasing current carrying capacity, and optimizing heat dissipation.

    What Are the Advantages of Bus Bar PCB?

    Bus bar PCB offers numerous benefits when be using the power supply applications, its main functions are:

    1. Reduce the inductance

    Bus bar PCBs reduce inductance by allowing current to flow between tightly spaced conductors. This layout reduces the loop area and thus the inductance value. This is particularly important for high-frequency and highspeed applications, as it reduces voltage spikes and noise, improving system stability and performance.

    2. Enhanced current carrying capacity

    Due to its large cross-sectional area and high-quality conductive materials, Bus bar PCB can efficiently carry large currents. This is particularly useful in applications that require a large amount of power distribution, such as power supplies, electric vehicles, and renewable energy systems. Bus bar PCBs support higher current density compared to conventional PCB wiring, which improves thermal management and reliability.

    3. Improve thermal management

    The Bus bar PCB effectively dissipates heat generated by key components. In high power applications, the buildup of heat can affect performance and life. The Bus bar PCB helps maintain optimal operating temperatures through efficient heat distribution, reducing the need for additional cooling mechanisms.

    4. Save space and weight

    The compact design of the Bus bar PCB reduces the overall size and weight of the electronic components. Its simple construction and elimination of multiple wire connectors contribute to space savings. This is particularly beneficial for applications where size and weight are critical, such as the aerospace and automotive industries.

    5. Improved reliability and durability

    Bus bar PCBS have superior mechanical strength and durability compared to traditional wiring systems. Its robust construction and secure connections reduce the risk of loose connections, failure due to vibration, and mechanical wear. This improves system reliability and service life for harsh environments and demanding applications.

    6. Simplify assembly and maintenance

    Using a Bus bar PCB simplifies the assembly process because it reduces the number of individual wires and connectors. This not only speeds up installation, but also reduces assembly errors. In addition, the Bus bar PCB provides a more orderly and accessible layout for easy troubleshooting and repair.

    embeded bus bar pcb

    7. Cost effective

    Although there may be a high initial cost, Bus bar PCBs can provide cost savings in the long term. Its advantages in reduced inductance, improved thermal management and enhanced reliability reduce operating and maintenance costs. In addition, Bus bar PCB reduces the need for addons, such as heat sinks or complex wiring bundles, thereby increasing overall cost effectiveness.

    What Applications of Bus Bar PCB?

    Due the high current carry capacity of the bus bar PCB, makes it very suitable for power supply or power management devices. Bus bar PCB can perform well in such fields. Here are some common application examples that bus bar PCB can be used for. If you are seeking for a PCB to integrate into your power supply project, then bus bar PCB is the go-to-choice.

    1. Power Electronics

    In power converters, inverters and high-current power supplies, Bus bar PCBS are widely used because of their ability to efficiently handle high currents and excellent thermal performance.

    2. The Automobile industry

    Another popular field that bus bar PCB used in is automotives, especially in electric vehicles (EVs) and hybrid electric vehicles (HEVs). In the electric cars, it can be used for battery connectivity and power distribution, contributing to weight reduction and performance improvements.

    3. Renewable energy

    Bus bar PCB is an environment friendly material, it is often used in solar systems, wind turbines and energy storage solutions to manage high currents and enhance reliability.

    4. Industrial equipment

    In industrial machinery and equipment, Busbar PCB provides powerful and efficient power distribution for motors, drives and control systems.

    aluminum bus bar pcb

    5. Aerospace

    Bus bar PCBS are used in aerospace applications, such as avionics and power distribution systems, where size, weight and reliability are key factors.

    Final Words

    All in all, bus bar PCB offers significant advantages in handling high currents, improving thermal management, and providing reliable power distribution across various applications. By integrating bus bar PCBs, industries can achieve better power management, reduced system size and weight, and improved overall reliability.

    Best Technology is a one-stop PCB solution provider in Asia, we offer various kinds of PCBs not only include bus bar PCB, but also Extra thin PCB, RF PCB, HDI PCB, Heavy copper PCB, Ceramic PCB, Metal Core PCB, Flex PCB and rigid flex PCB, PCBA and so more. We have more than 17 years-experience in PCB design and manufacturing, and served more than 1200 customers. Choosing Best Technology as your supplier ensures you get high quality PCBs, helping to improve the performance and competitiveness of your products. Contact us right now to customize your own PCB!

    You may also like

    What is the Rogers Printed Circuit Boards?
    Monday, May 13th, 2024

    Rogers Printed Circuit Board (short for Rogers PCB) is a printed circuit board (PCB) manufactured using a special high-frequency material produced by Rogers Corporation. These boards are designed to meet the demanding performance requirements of high-frequency electronic devices, especially in wireless communications, microwave technology, high-speed digital signal processing, radio frequency (RF) products, and applications requiring extremely high stability and low signal loss.

    Rogers pcb made by best technology

    What are the Main Features of Rogers Printed Circuit Board?

    Rogers boards are made of a proprietary amide resin material, which gives them excellent dielectric properties, thermal stability and mechanical strength. Even in extreme working environments such as high temperature and humidity, high frequency and high speed, Rogers PCB board can maintain stable operation, showing its strong adaptability and reliability. Whether it is to improve the performance of electronic equipment, or to ensure the stability of the system, Rogers PCB board plays a vital role. Below are some main features and benefits of Rogers PCB.

    • Special substrates

    Unlike traditional PCB materials based on glass fiber reinforced epoxy resins such as FR-4, Rogers PCBs are ceramic filled or based on high-performance substrates such as liquid crystal polymers (LCP), for example, RO4350B, RT/duroid series, TMM series and TC series. These substrates provide excellent electrical properties, such as low dielectric constant (εr) and low dielectric loss factor (Df), ensuring low signal loss and high-speed during transmission.

    • High frequency performance

    Rogers PCB is particularly suitable for high frequency applications, because its material characteristics make the circuit board can maintain extremely low signal attenuation and stable electrical performance at operating frequencies up to tens or even hundreds of GHz. This makes them excellent in radar systems, satellite communications, 5G/6G network equipment, radio frequency identification (RFID) systems, high-speed data transmission interfaces (such as USB, PCIe) and other applications.

    • Temperature stability

    Rogers material has excellent thermal stability and low coefficient of thermal expansion (CTE), which matches the thermal expansion rate of copper foil, helping to reduce the stress and deformation caused by temperature changes, ensuring the reliability of the circuit when working in a wide temperature range.

    • Mechanical strength and heat resistance

    Due to the use of high-performance composite materials, Rogers PCB usually has high mechanical strength and good high temperature resistance, and can adapt to harsh environmental conditions and heat dissipation requirements.

    • Surface treatment

    Rogers PCB can carry out a variety of surface treatments, such as gold plating, silver plating, organic welding film (OSP), etc., to meet the specific requirements of different applications for weldability, oxidation resistance, contact resistance, etc.

    • Multi-layer structure and fine traces

    Rogers PCB can be made into single-layer to multi-layer structure, support high density interconnect (HDI) design, with fine lines (such as line width/line distance up to 0.3mm or smaller) and small aperture (such as 0.3mm), suitable for complex and precise high-frequency circuit design.

    • Low moisture absorption

    Rogers material moisture absorption rate is very low, even in high humidity environment can maintain stable electrical performance, reduce the impact of moisture on dielectric properties, to ensure long-term reliability. In summary, Rogers printed circuit board is a high-end, professional-grade circuit board product, with its excellent high frequency characteristics, stable electrical performance, excellent temperature stability, and wide applicability, becoming the ideal choice to meet the demanding requirements of modern high performance electronic equipment and communication systems.

    Why Use Rogers Printed Circuit Boards?

    High frequency PCBs often need high performance with low signal losses, low electrical noise, or high board temperatures. To meet this need Rogers Corp. PCB materials are often used as they are cost effective vs. many of the alternatives. Here are some typical Applications for Rogers PCB:

    All kinds of the Microwave equipment.

    5G Cellular Base Station Antennas and Power Amplifiers

    Automotive Radar and Sensors

    RF Identification (RFID) Tags

    Direct Broadcast Satellites for low noise block downconverter

    Medical equipment such as monitoring instrument, cardiac pacemaker, MRI, etc.

    Military and aerospace

    Rogers pcb made by best technology

    Rogers series is often used in RF PCBs with frequencies 6+ GHz and in high heat applications that need ceramic laminates and low signal losses. It may also be used to minimize electrical noise to meet stringent performance requirements.

    In our next blog from Best Technology, we are going to share more information about different material from Rogers PCB. pls follow us and if you want to know more about the Rogers PCB, warmly welcomed to visited www.bestpcbs.com or email us, it would be our great pleasure to answer all the questions for Rogers PCB.

    You may also like

    What Are Stamp Holes and What’s the Design Standard About It?
    Monday, May 6th, 2024

    Have you ever seen several small holes on the rails of the PCBs or located at the board edges? They look like trails bites by mouse, do you know what they are? And what’s the function of these? This blog may make you sense about it.

    What is Stamp Hole on PCB and its Purpose?

    Stamp holes, also sometimes called breakaway holes or mouse bites, are small holes drilled in a row or array along the rails or edges of each circuit board within the panel. They look like the edges of a stamp, so people call it “stamp holes”.

    Stamp hole is used primarily in the process of depanelized PCBs. De-paneling is the process of separating individual PCBs from a larger panel, which is a common method in PCB manufacturing to improve production efficiency and reduce costs. The larger panel makes handling and processing multiple PCBs easier during the manufacturing process. In some ways, panel also improves the utilization of the raw materials. Once the manufacturing steps are complete, the individual PCBs need to be separated for use in their corresponding devices. And these holes between the single PCBs can create a weak point along which the boards can be easily broken apart after manufacturing be completed.

    stamp holes on pcb

    Why Use Stamp Holes Expertise In PCBs?

    It is possible to use stamp holes if the boards are abnormal shaped or round. The stamp hole is connected between each circuit boards, which mainly plays a supporting role and avoid PCB be scattered. Most commonly, they are used to create PCB stand-alone modules, such as Wi-Fi, Bluetooth, or core board modules, which are then used as stand-alone components placed on another board during PCB assembly.

    The use of stamp holes allows for a relatively clean break along the separation line, but it may leave behind rough edges or require additional finishing steps to smooth out the remnants of the perforation points. This method of depaneling is a cost-effective solution and can be used for various types of PCBs, but it might not be suitable for very delicate circuits or when a perfectly smooth edge is required. In addition, V-cut and hollow connection strips also are the common depaneling ways for PCBs.

    stamp holes on pcb

    What are differences between Stamp Hole, V-cut and Hollow strip?

    When preparing a panel for the manufacturing of multilayer PCBs, it’s essential to consider a method used to connect individual boards within the panel. As mentioned above, there are three connection methods for PCB technology, each serving different types of PCB designs and requirements. So, which one is the better or how to choose a suitable one for your project? Welcome to keep reading.

    V-Cut (V-slot)

    V-cut is the most common way to separate the PCBs during the circuit board manufacturing. It mainly utilizes for PCBs with straight edges or straight lines. This method involves cutting a V-shaped groove along the line where two PCBs are connected within the panel. When implemented, V-cuts leave a narrow gap (the width of the V-cut itself) between the boards. V-cut depth is an essential point during the process, make sure it has 1/3 depth on top and bottom side. The V-cut is especially suitable for standard, rectangular PCB designs, allowing for a clean and efficient separation of the boards once all other manufacturing processes have been completed.

    Stamp Holes

    For PCBs with unique or irregular shapes, stamp holes are often the preferred method of connection. Its process involves drilling multiple small holes in an array at the points where the individual PCBs connect within the panel. These holes create a perforated line that weakens the material enough to facilitate easy separation of the boards by applying minimal force, without compromising the integrity of the circuitry. But this way can only be used if you don’t have strict requirements for burrs on edges. And it is easy to damage the whole board if use improper approach.

    Hollow Connecting Strips

    Hollow connecting strips are used in scenarios where a very narrow strip of material is left to connect the boards within the panel. This method is particularly useful for PCBs utilizing half-hole (castellated holes) technology. The narrow strips maintain the alignment and integrity of the PCBs during the manufacturing process but can be easily removed or broken away to separate the individual boards. Hollow strip is less common but essential for specific designs and technologies.

    Each of these connection methods has its specific applications, advantages, and considerations. The choice between V-cuts, stamp holes, and hollow connecting strips depends on the design of the PCB, the requirements of the manufacturing process, and the desired ease of separation post-manufacturing.

    How to Add Stamp Holes on Your Circuit Board?

    Designing stamp holes is a critical step in preparing your PCB for the depaneling process. This includes creating a series of small holes along the intended lines of separation between individual boards in a panel. Here’s a step-by-step guide to help you incorporate stamp holes into your PCB design effectively:

    1. Understand the Purpose

    Recognize that stamp holes are used to facilitate the manual separation of PCBs from a panel after the manufacturing process, minimizing the risk of damage to the board and its components.

    2. Plan Your Layout

    Placement: Decide where the stamp holes will be located on your PCB layout. They should be placed along the edges where the PCB will be separated from the panel.

    Number and Spacing: The number of stamp holes and their spacing can significantly affect the ease of PCB separation. Typically, a distance of 0.5mm between holes and 1.0mm between centers of holes are used, but this may vary based on the PCB material and thickness.

    3. Select the Hole Size and Quantity

    The diameter of stamp holes usually ranges from 0.6 mm to 1 mm. The size may depend on your specific requirements and the capabilities of your PCB manufacturer. As for quantity, 5-8 holes in an array is good (always 2 arrays/rows), more also is available, it can be adapted based on your specific needs.

    4. Arrangement of Stamp Holes

    Two rows of stamp holes should be added at the edge of the PCB, extending slightly into the board. This design ensures that any burrs left on the board edge after separation will not affect the PCB’s overall dimensions. If there are traces or other critical components on the edge of the board, ensure that the stamp holes are placed to avoid damaging these elements during separation.

    5. Design Using PCB Design Software

    Use your PCB design software (such as Altium Designer, Eagle, or KiCad) to add the stamp holes to your design. This can usually be done by placing a series of via or pad holes along the separation lines.

    Some software packages may offer tools to automate this process, allowing you to specify the number of holes, their spacing, and diameter, and then automatically place them along a line.

    6. Consult with Your Manufacturer

    Before finalizing your design, consult with your PCB manufacturer for any specific guidelines or requirements they have for stamp holes. This can include preferred sizes, spacing, and any additional considerations to ensure the depaneling process goes smoothly.

    Provide detailed documentation of your stamp hole design to your manufacturer to avoid any confusion during the production process.

    7. Review and Adjust

    After adding the stamp holes to your design, review the layout to ensure that there is adequate clearance between the holes and any nearby components or traces. This is crucial to avoid damage during the separation process.

    Adjust the size, spacing, and number of stamp holes as necessary to meet both your design requirements and the manufacturer’s capabilities.

    stamp holes on RF pcb

    In the design process, these considerations should be adjusted based on the specific PCB design and manufacturing requirements. Moreover, find a reliable PCB manufacturer to ensure these design details are accurately implemented is key to successfully fabrication.

    Best Technology specializes in PCB manufacturing for more than 17 years, offering comprehensive PCB production and design services to over 200 countries worldwide. To ensure the best quality and fast delivery, we set up a strictly quality control system according to ISO9001 and equipped with advanced measured devices such as AOI, X-RAY, 2D, 3D measurement tools in our factory. We provide 24/7 hours service and commitment with a timely reply within 10 hours. We sincerely appreciate your any comments or consults, welcome to contact us at any time.

    You may also like

    How Can I Reduce and Optimize the Cost of My PCB in A Best Way? – Series 2
    Saturday, October 28th, 2023

    At our latest blog, may the readers have understood the factors that will affect the PCB price, or maybe one of your have put it into practice that get a price lower than your budget. However, people are always not satisfied by the existing situation. If this is bother you as well, keep reading since this time we are going to sharing some useful tips that enable to optimize your PCB price until to the best.

    • Reduce board complexity

    It can be said that try to simplest your design/layout and make it easy to fabricate is the simplest way to reduce your PCB cost. The more complex and irregular the forms, the higher the cost. Just remember: for every circuit board, no need to maintain a fancy diagram to demonstrate its excellence, perform functionality correctly is enough.

    • Design it in right size and thickness

    Design your board in right size doesn’t means make it smaller as possible. You must know, if your design is complex and layouts are density, that means maker need to spend more time to assemble them. Highly compact sizes are always expensive, don’t skimp when it counts. Otherwise, more money will be spent to afford what you saved.

    And in theory, the more layers and thickness the board, the more cost that manufacturer spend. Numerous layers in the PCB will have an influence for holes and diameters. It is recommended that if thinner thickness is enough, then just do it. 

    • Shapes, holes and rings should be regularly

    Normally, keep the PCB as square or rectangular shapes is cheaper than irregular shapes like pentagon.  And large holes and rings enable to smooth the production run and easy to create. For smaller holes and rings means the driller must be smaller and delicate control.

    • Consider volume and choose manufacturer

    In our last blog, we emphasize manufacturers will set a minimum order quantity (MOQ), it is common in this industry. So, consider your volume and check multiple quantities before ordering can help to recognize which one is the most cost-effective.

    During the evaluation period, talk to your suppliers as soon as possible, knowing more about the material specifications, technical and PCB tolerances. A wrong choice will lead to much time waste and some unnecessary cost. This is we call “trial and error cost”. Try to make all things are clear and correct before production.

    • Pick the best vias

    There are totally three types of vias in PCB: though-hole, blind, buried. The through hole can be passed through the whole board, while blind vias is created from top or bottom side to the middle of the board without through to bottom or top side. Buried vias, just as its names, it is buried inside the boards and we can’t see it by naked eyes.

    Obviously, through hole is cost performance than other two vias, try to use more instead of blind or buried vias enable to decrease your cost. In additionally, blind and buried vias are always necessary in HDI PCB and RF board, otherwise, you don’t usually use them.

    • Make sure all SMT components on the one side

    Trying to make all the surface mounted (SMT) components on the one side of circuit board if possible. In this way, assembler can finish the SMT process in one-time, so that can save much manufacturing time and cost. But if the components are distributed on both sides, it is needed to assemble two times, that is top side first – bottom side second (or sometimes bottom first).

    • Select easily replaceable component parts

    It is assumed that one of part on your circuit becomes obsolete, then you must search for replaceable part or update your design if you would like to continuedly use this board. As an extensive experienced PCB manufacturer, we strongly recommend that select components that has standard dimension, so that it is easy to match alternative one.

    In addition, visit some manufacturer’s website carefully to see if any components are marked as “obsolete” or “not recommended for new designs” before finishing your design. This enables to avoid secondary update.

    • Follow manufacturer’s PCB fabricate standards

    Understand and follow manufacturer’s fabricate standards can keep your unit PCB price in a relative lower cost. When designing a new project, please make sure to following below tips.

    1. Use standard stack-up with standard materials.
    2. Design 2-4 layers PCB if possible.
    3. Keep your minimum line width and spacing within the standard spacing.
    4. Avoid adding extra special requirements as much as possible.
    • Use SMT components as possible

    Choose surface mounted (SMT) components instead of through hole (THT) component whenever possible. SMT and THT are almost treated as separated manufacturing processes. Hence, if all the THT components can be replaced by mounted parts, the THT process will be eliminated completely. It is not only decreasing the manufacturing cost, but also reducing delivery time. Of course, it is not always possible, but it’s worth trying.  

    Whatever decisions you make, the best solution is to consult and discuss with your suppliers. They be always to give you the best one that can save your money and meet your requirements as well. Meanwhile, if you don’t believe the suppliers, you are welcome to reach us. We promise that we can give you a most favorable price and high-quality product.

    You may also like

    What Factors Affect the PCB Board Price? How to Keep the Best Price? – Series 1
    Saturday, October 28th, 2023

    For each development engineer or purchaser, how to keep the cost within the budget is a most irksome and irritating assignment while the PCB has the good quality and enable to perform desired function. They need to understand the computation rule and calculate the developing cost. So, it is worth to knowing the factors that affect the printed circuit board price, and it is a must learn course for every engineers. Herein, Best Technology is going to dissect the factors affect the cost of PCB, let’s move on!

    What affects the cost of a PCB?

    Drives the cost of PCBs are numerous, we can see from the PCB itself, for example, circuit board substrate materials, the external factors such as the manufacturing difficulties, the whole order quantities and some other special requirements that from designers.

    Here, we listing some basic parameter factors which drives the whole cost of a PCB.

    • PCB substrate material

    The substrate of PCB board refers to the material used in the non-conductor part of the circuit board, mainly FR4, glass fiber, epoxy resin, polyimide, copper, aluminum and so on. In the PCB manufacturing, glass fiber is widely used in the manufacture of double-sided circuit board and multi-layer board, while epoxy resin and polyimide are used in the manufacture of high-density multi-layer board. Among them, copper substrate is most expensive material. No matter what kind of materials, all of them shall be calculated according to the real-time international price.

    • PCB size (panel and single pcs)

    PCB size will determine the price of PCBs, this is for sure. Generally speaking, with a same number of PCB layers, the smaller the PCB size, the cheaper the cost. Because during calculating cost, vendors will consider the utilization rate of raw materials. Make sure the highest utilization, the cost for both purchaser and vender will be best. The raw material of PCBs is commonly 1200mm*1200mm, or 1220mm for special specifications, when the utilization achieves 90% or above, this is the best.

    So, how to improve the utilization of raw materials? Normally, manufacturers will optimize the working files (WF) from single size to panel size, and then material will be cut according to the panel files. But if the panel size is not suitable, then there will be a lot of waste edges of raw material in the cutting process, and generally this will be added into your PCB price. So that the unit PCB price will be more expensive. In another word, if you PCB size is well-suited, then it is good for PCB manufacturer and yourself. And at this time, the utilization will be the highest and your PCB cost is the cheapest as well.

    • Line width/spacing

    To a certain extent, as long as you are following the PCB design rules, the PCB price will not too high. However, if your design is complex and the line width is extreme thin, then the price will increase since it is difficult to control during manufacturing.

    • PCB layers

    According to the IPC standard, PCBs can be classified to single-layer PCB, double sided PCB and multilayer PCB. For layer count over than 2 layers, we called it as Multilayer PCBs, such as 4 layers PCB, 6 layers PCB. For FR4 PCB, we can make up to 32layers.

    Due to the manufacturing process and some unpredictable assembling cycles, the more the layers, the more expensive it is. (The price of single side PCB is the similar to double sided PCBs.)

    • Solder mask ink color

    In the past, it is no doubt that you will spend more if you want every color expect green. But now things are changeable. Most colors are available at no or very little extra cost, which usually only occurs for unique requests such as matte tones.

    • PCB copper foil thickness

    The weight of copper foil depends on the successful utilization of the material. Thicker copper is more expensive and comes with additional manufacturing difficulties and expenses. You may also have to fill the holes with copper foil to connect layers. In addition, heavier copper means you need to spend more cost in shipping. Let’s take a simple example, for aluminum core PCB and copper core PCB, in the same volume and quantities, copper core PCB stands out for expensive shipping cost since it has thicker copper and heavier weight.

    • PCB surface treatment

    Surface treatment is a method that using for protecting the surface from corrosion and improve the solderability. Usually, in consideration of environmental friendliness, vendors can use a couple of gold or silver to achieve further safety for use in some applications.

    The commonly used surface treatment methods include OSP, IMMERSION SILVER, ENIG, ENEPIG and HASL (LF). Among them, the price is ENEPIG>ENIG>IMMERSION SILVER>OSP>HASL. You can calculate the PCB board price according to the surface treatment method and gold thickness.

    • Quantity and lead time

    When developing a new project, almost of companies would like to make prototypes first and ask for a sample quotation. However, some PCB manufacturers will set the minimum order quantity, the smaller the quantity, the higher cost the PCB board. Please make sure to check the price for different amount before placing an official order.

    Meanwhile, the delivery time request also will affect the whole price in a certain. And certainly, the price of quick turn order and expedited service will higher than normal order.

    • Other special requirements (impedance, IPC standard)

    To ensure the stable transmission of circuit board signals and improve the quality of signal transmission, designers and engineers will ask for impedance control for the traces. This can be seen as special requirements, so it will add a few extra prices. And the required IPC Criteria is a factor as well. Normally, if customer does not have other request, we will default use IPC class II. III level will more expensive.

    Above all are the mainly factors that affect the price composition for a printed circuit board. When evaluating your PCB cost, making them in your consideration is best.

    PCB and PCBA supplier that can save cost for you – Best Technology

    When you are seeking for a reliable PCB and PCBA supplier, I would like to recommend Best Technology to you. Best Tech offers one-stop service including raw material purchasing, PCB making, components searching, assembly, box building and package out of warehouse. What we can provide is not limited to PCB, but also metal core PCB, ceramic PCB, flexible PCB, rigid flex PCB, special PCB like HDI PCB, heavy copper PCB, extra thin PCB and so on. During the 17 years, the Best Technology company has served include medical industry, consumer electronics, new energy, automotive electronics, aerospace, military and others.

    Could it be said that you are searching for a PCB supplier that can provide favorable price that lower than market? If this is true, please go ahead and reach us today, let’s talk about more PCB information right now and start our business trip together. We promise, when you decide to take the first step, and we’ll take the remaining 99 steps.

    You may also like

    What is RF PCB board?
    Tuesday, November 23rd, 2021

    You may have ever heard of RF PCB, but do you know What it is and What are the characteristics of these kinds PCB?

    Today let us make a simple introduction for it.

    RF PCB, means radio frequency PCB. People also called these PCB High frequency PCB, it is for the PCB with a higher electromagnetic frequency, and it is used on the products field with high frequency. (Frequency greater than 300MHZ or wavelength less than 1 meter) and microwave (frequency greater than 3GHZ or wavelength less than 0.1 meter). It is made by microwave substrate with common PCB manufacturing process or with some special way to make.

    High-frequency boards have very high requirements for various physical properties, accuracy, and technical parameters, and are often used in communication systems, automobile anti-collision systems, satellite systems, radio systems and other fields.

    How can we know which PCB materials are suitable for making the RF boards?

    When evaluating the high-frequency characteristics of a substrate material, the key to its investigation is the change in its DF value (Dissipation Factor).

    For substrate materials with high-speed and high-frequency characteristics, in terms of changing characteristics at high frequencies, there are two distinct types of general substrate materials: one is that with the change of frequency, its (DF) value changes very little. There is another type that is similar to the general substrate material in the range of change, but its own (DF) value is lower.

    The common epoxy resin-glass fiber cloth-based materials (FR4), the DK value at the frequency of 1MHz is 4.7 and the change of the DK value at the frequency of 1GHz is 4.19. Above 1GHz, the change trend of its DK value is gentle. The change trend is that as the frequency increases, it becomes smaller (but the change is not large). For example, at 10GHz, the DK value of FR-4 is generally 4.15. The substrate material with high-speed and high-frequency characteristics changes in frequency. When the DK value changes slightly, the DK value keeps changing in the range of 0.02 when the frequency changes from 1MHz to 1GHz. Its DK value tends to decrease slightly under different frequency conditions from low to high.

    On the other hand, the thermal expansion coefficient of the high-frequency circuit board substrate and the copper foil must be the same. If they are inconsistent, it will cause the copper foil to separate during the cold and hot changes. Secondly, in a humid environment, the water absorption rate must be low, and high water absorption rate will cause dielectric constant and dielectric loss when wet. In general, the heat resistance, chemical resistance, impact resistance, and peel resistance of the high-frequency sheet must be good.

    The following are several commonly used high-frequency and high-speed PCB boards we have summarized:

    Rogers: RO4003, RO3003, RO4350, RO5880, etc.

    TUC: Tuc862, 872SLK, 883, 933, etc.

    Panasonic: Megtron4, Megtron6, etc.

    Isola: FR408HR, IS620, IS680, etc.

    Nelco: N4000-13, N4000-13EPSI, etc.

    Other materials like Arlon, Teflon, Taconic are also good for the manufacturing of RF PCB boards.

    If you have any question for RF pcb, welcome to send your request and question to discuss more.

    You may also like

    What’s RT/duriod 5880?
    Tuesday, December 1st, 2020

    For PCB materials, you may have ever heard about many different kinds of materials such as the materials of FR4, Aluminum, Copper base and ceramic base.

    But do you know what the duriod 5880 materials is?

    Actually duriod 5880 is a kind of materials of the Rogers, it is the materials which is used for high frequency circuit board. RT 5880, which is famous for its low dielectric loss, low moisture absorption, and stable dielectric constant. The PCB made of duriod 5880 can be widely used in airborne and ground-based radar systems, millimeter wave applications, and space satellite transceivers.
    Different with other kinds materials, the color of the RT 5880 materials is black.

    Why this material can be used in such high end field? Let’s see below to know more information.

    Excellent dielectric properties:
    RT/duroid 5870/5880, as a new generation of high-frequency laminate, is made of polytetrafluoroethylene composite material (PTFE). At the same time, glass microfibers are randomly distributed in the material, which provides the greatest strength during the production and application of the circuit board.

    High-frequency circuit design has strict requirements on the dielectric constant of the printed circuit board. RT/duroid 5880 has an ultra-low dielectric constant and remains the same in a very wide operating frequency range.

    At 10GHz operating frequency, the measured dielectric constant is only 2.33/2.2, which is significantly lower than similar materials on the market. Therefore, from the perspective of performance parameters and production costs, the board is more suitable for high-frequency application design than similar products.

    At the same time, under the same standard (f=10GHz), and the dielectric loss of the RT5880 is only 0.0012/0.0009. The extremely low dielectric loss makes it very suitable for high-frequency and the field of wide-band applications which requiring minimal dispersion and low loss.

    In addition, the extremely low moisture absorption rate makes it an ideal choice for applications in high humidity environments. The moisture absorption rate of RT/duroid 5880 is only 0.02%, so it can meet the strict requirements of mechanical reliability and electrical stability in the complex microwave structure design, and it is also suitable for applications in high humidity environments.

    With the continuous improvement of the operating frequency of high-frequency circuits, the requirements for the dielectric constant and dielectric loss of the circuit board are becoming more and more stringent. The excellent performance of RT/duroid 5880 in these two aspects can significantly improve the design of high-frequency circuits. Definity, improve circuit performance.

    Easy to process and install
    In this high-frequency design, in order to meet the requirements of electromagnetic shielding and compact design, printed circuit boards are often installed in various irregularly shaped cavity structures. Therefore, the PCB board must be designed in different shapes and suitable for production and Installation.

    For RT/duroid 5880 laminate, which is easy to cut, trim and good for PCB manufacturing.

    At the same time, it can resist all the solutions and chemical agents used in the process of etching and plating through holes, and it has a good performance of the cold and heat resistance.

    The composite material RT/duroid 5880 can be covered with a laminated copper foil for some key electrical applications, and brass plates or copper can also be used as required.
    Usually laminates of the RT/Duriod 5880, it can make double-sided copper clad with thicknesses ranging from 1/2 oz. to 2 oz./ft2 (8.5~70 μm) to meet most custome’s requirements for the thickness of copper foil.

    Our company has focus on the PCB fabricationi for more than 15 years, we can make PCB with Rogers PCB with RT/Duriod 5880, as well as RO4003C and RO4350B with different thickness.
    If you are interesting to know more and your PCB also want to made of RT/Duriod 5880, please feel freely to contact us for more information related.

    You may also like