pcb
Home > Blog

Archive for the ‘FAQ’ Category

6 Layer PCB Stackup, Thickness, Impedance Control
Friday, October 18th, 2024

What is a 6 Layer PCB?

A 6 layer PCB is a printed circuit board that has six conductive layers. It consists of 4 inner layers and 2 outer layers, of which the inner layer is made of copper foil and located in the center of the board (we cannot see it by our eyes), while the outer layer is located on the top and bottom of the board. This design packs a punch, letting you fit more complex circuitry into a smaller space. It’s perfect for small electronic devices that need to do a lot.

6 Layer PCB Stackup, Thickness, Impedance Control

6 Layer PCB Structure

In a typical 6 layer PCB stackup, the conductive layers are numbered from top to bottom, starting with Layer 1. Here’s what a standard configuration looks like:

  • Layer 1: Top Layer
  • Layer 2: Reference Plane 1
  • Layer 3: Signal or Plane Layer 2
  • Layer 4: Signal or Plane Layer 3
  • Layer 5: Reference Plane 2
  • Layer 6: Bottom Layer

The top and bottom layers are the two most common layers in a 6-layer PCB. They are often used to mount large components and connectors. The main role of the top and bottom layer is to provide the structure and support of the circuit board, and can also be used to connect external devices. The middle layers handle signals and reference planes (like ground and power).

Common 6 Layer PCB Stack-Up

When it comes to stacking up those layers, you have a few common configurations:

6 Layer PCB Stackup, Thickness, Impedance Control

Stack-Up Option 1: S G S S P S

  1. Top Layer (Signal)
  2. Layer 2 (Ground)
  3. Layer 3 (Signal)
  4. Layer 4 (Signal)
  5. Layer 5 (Power)
  6. Bottom Layer (Signal)

This kind of stack up has more signal layers, which is conducive to the wiring work between components; Because POWER and GND are far apart and not tightly coupled, the signal layers are directly adjacent, which is easy to cause crosstalk. Therefore, staggered wiring is required during wiring. When the power supply impedance is low.

Stack-Up Option 2: S S G P S S

  • 1.     Top Layer (Signal)
  • 2.     Layer 2 (Signal)
  • 3.     Layer 3 (Ground)
  • 4.     Layer 4 (Power)
  • 5.     Layer 5 (Signal)
  • 6.     Bottom Layer (Signal)

POWER and GND are tightly coupled, but the plane reference is too far away and the signal isolation is not good, which is easy to cause crosstalk.

Stack-Up Option 3: S G S G P S (preferred solution)

  • 1.     Top Layer (Signal)
  • 2.     Layer 2 (Ground)
  • 3.     Layer 3 (Signal)
  • 4.     Layer 4 (Ground)
  • 5.     Layer 5 (Power)
  • 6.     Bottom Layer (Signal)

POWER and GND layers are tightly coupled, with good EMI characteristics, and the signal layer is directly adjacent to the internal electrical layer, and is effectively isolated from other signal layers, which is not easy to crosstalk.

Stack-Up Option 4: S G S P G S

  • 1.     Top Layer (Signal)
  • 2.     Layer 2 (Ground)
  • 3.     Layer 3 (Signal)
  • 4.     Layer 4 (Power)
  • 5.     Layer 5 (Ground)
  • 6.     Bottom Layer (Signal)

POWER and GND are tightly coupled. The signal layer is adjacent to the ground layer, the power layer is paired with the ground layer, the impedance of each line layer can be better controlled, and the magnetic field line can be well absorbed by both layers. This layered scheme is suitable for the design of high chip density and high clock frequency.

6 Layer PCB Thickness

The total thickness of a 6 layer PCB usually ranges from 0.8 mm to 2.0 mm. Of course, this can vary based on materials and what you’re aiming for. Each layer contributes to this thickness, and the copper thickness often ranges from 1 oz to 3 oz. Thicker boards tend to offer better durability and heat dissipation, but they can also be less flexible, which is something to consider depending on your application. The common thickness structure are showing as below:

6 Layer PCB Stackup, Thickness, Impedance Control

Above are the common structure and thickness of a 6 layer multi-layer PCB, if you want thicker thickness, welcome to contact with us, our expertise team will give you the best and cost-effective solution!

6 Layer PCB Manufacturing Process

6 Layer PCB Stackup, Thickness, Impedance Control

6 Layer PCB Price

The price of a 6 layer PCB doesn’t have a standard number/value. It varies based on factors like material, size, and complexity. Generally, they are more expensive than simpler designs due to the increased number of layers and the advanced manufacturing processes involved. However, the investment often leads to improved performance and durability. Here are some factors that will effect your 6 layer PCB price:

  1. Design complexity: If the design is intricate, expect a higher price.
  2. Material quality: Premium materials can drive up the cost but often improve performance.
  3. Volume: Producing in bulk usually lowers the cost per unit.
  4. Manufacturing process: The more difficult process, it will cost much more. Like a normal 6 layer FR4 PCB with through holes is cheaper than 6layer HDI PCB with blind or buried via holes.
  5. Surface treatment: Different treatment you choose will affect your overall price.

In general, you’re looking at prices that range from $5 to $50 or more per unit. It might sound steep, but investing in a quality 6 layer PCB can really pay off in terms of performance and reliability.

6 Layer PCB vs. 4 Layer PCB

6 layer PCB is different with 4 layer PCB, from the board thickness, cost, line width and spacing and etc. Here we listing three main differences between them:

1. Board thickness

The thickness of the PCB board is the thickness of the fingerboard, usually in millimeters. There is a difference in thickness between six-layer and four-layer plates. The thickness of the six-layer plate is usually between 1.6mm and 2.0mm, while the thickness of the four-layer plate is between 1.0mm and 1.6mm. Therefore, the thickness of the six-layer plate is thicker than that of the four-layer plate.

2. Line width

The line width refers to the width of the wire on the circuit board. There is also a difference in line width between six-ply and four-ply panels. The line width of a six-layer board is wider than that of a four-layer board. This is because in a six-layer board, there are more circuit layers, so it is easier to accommodate a wider line width.

3. Drilling

Drilling is an indispensable part of the PCB board production process. It is usually used to punch holes in the board so that electronic components can be installed. There is also a difference in the number of holes drilled between six-ply and four-ply panels. Because the six-layer board has more circuit layers, the number of holes is relatively high.

Impedance Control for 6 Layer PCB

‌The impedance control of 6-layer PCB is to control the impedance value of signal transmission by designing the geometry and material of the circuit board to improve the speed and quality of signal transmission, and reduce signal reflection and interference. ‌ Common methods of controlling impedance include adjusting parameters such as the width, spacing and thickness of the signal lines, using differential lines to reduce signal interference and noise, and using interlayer isolation to prevent signal interference.

In the 6-layer PCB design, the specific implementation methods of impedance control include:

  • Signal line width and spacing control

Signal line width and spacing is a key factor affecting the impedance. Strictly control the line width tolerance within ±10%, and pay attention to the possible pinholes, notches, dents and other problems on the wire, which will further affect the line width and impedance.

6 Layer PCB Stackup, Thickness, Impedance Control
  • Dielectric layer thickness control

Dielectric layer thickness has a significant effect on impedance. Use advanced manufacturing technology and equipment to ensure the uniformity and consistency of the thickness of the medium layer, and strictly control the thickness tolerance of the medium layer within the design requirements.

  • ‌The use of differential line

Differential line can effectively reduce signal interference and noise, improve the quality of signal transmission and anti-interference ability.

6 Layer PCB Stackup, Thickness, Impedance Control
  • Partially filled with copper and grounded

Fill the area without components or wires with copper, and ensure that the copper filled area is connected to the internal ground layer or power layer at multiple points. The distance between the connection holes does not exceed 1/20 of the highest harmonic wavelength of the signal ‌

6 Layer PCB Design Considerations

When you’re designing a 6 layer PCB, there are several things to keep in mind:

Reference Plane Placement

For the best performance, reference planes (usually ground and power) should be placed next to the routing layers. This setup helps maintain controlled impedance, which is critical for high-speed designs. Having a continuous ground plane right next to signal layers is a great practice.

Plane Splits

Sometimes, reference planes need to be divided into separate sections for analog and digital power. This keeps the analog circuitry isolated from the digital side, which helps reduce noise in sensitive areas.

Symmetry in Design

It’s usually best to keep the stackup symmetrical, with reference planes both above and below the signal layers. This arrangement improves signal integrity. But in some cases, asymmetrical designs are used depending on specific design needs.

Thermal Management

Consider how to manage heat, especially in high-power scenarios, to ensure reliability.

Signal Routing

High-speed or noise-sensitive signals should be routed on the inner layers between reference planes. Keeping these signals away from the outer layers helps minimize interference.

Breakout Vias

When transitioning from inner layers to outer layers, breakout or stub vias should be used. These vias help manage any stub effects, keeping things tidy and controlled.

Minimum Spacing

Lastly, always follow the board fabricator’s guidelines for minimum trace width, spacing, and annular ring sizes. This ensures the board meets the necessary standards and avoids any manufacturing issues.

Simulation Tools

Use simulation software to identify potential issues before manufacturing, which can save you time and hassle.

Best Technology is a reliable PCB manufacturer in China. As one of the highly experienced circuit board suppliers, our products and services include a wide range of printed circuit boards such as rigid PCBs, flex PCBs, rigid-flex PCBs, aluminum PCBs, RF Microwave PCBs, high-speed PCBs, high-frequency PCBs, HDI PCBs, etc. If you have such demands, welcome to contact us.

Why CEM1 PCB material still popular in electronics? CEM1 vs CEM3
Thursday, October 17th, 2024

CEM1 (Composite Epoxy Material) is a popular material used in the electronics industry for printed circuit boards (PCBs). While newer materials like FR4 have gained popularity, CEM1 still holds an important place in the market. This material offers a cost-effective solution for many electronic devices, especially when the application does not require the highest levels of durability or thermal resistance. But what makes CEM1 such a mainstay? And how does it stack up against other materials like CEM2, CEM3, and FR4?

In this blog, we’ll dive into the details of CEM1 PCB material, exploring its specifications, advantages, and the reasons it’s still commonly used. We’ll also compare it to other PCB materials, helping you understand when it’s the right choice for your project.

What is CEM1 PCB Material?

First, it’s essential to understand that CEM-1 is a material grade representing a specific type of composite base copper-clad laminate. CEM-1 material is made from multiple layers of cellulose or cotton pulp fiber paper and glass fiber cloth, all of which are reinforced with flame-retardant epoxy resin. Usually has milky-white color. While it’s considered a low-grade material, it is still widely used in the PCB industry, especially for single-sided PCBs.

You might wonder why CEM-1 remains popular despite the rapid advancements in technology, where electronic products are becoming thinner and more compact. The reason lies in its cost-effectiveness. Even though new, high-quality materials are now available, they tend to be more expensive. In contrast, CEM-1 offers a significantly lower cost while still providing decent electrical properties.

CEM-1 PCBs are typically single-sided, meaning components are mounted on just one side of the board. This limits its use in high-performance applications, but it remains an excellent choice for many consumer electronics, where both performance and budget constraints are critical. On the other hand, CEM-3 laminates feature a chopped fiberglass core, which provides added strength and durability. CEM-3 shares similar performance characteristics with the more commonly used FR-4 material.

CEM-3 is often chosen for applications where flame resistance and reliability are key factors. Unlike CEM-1, which is confined to single-sided boards, CEM-3 is suitable for double-sided and multilayer PCB designs, making it a more versatile option in more complex applications.

CEM-1 Material Specifications

CEM-1’s specifications reveal its balance between performance and affordability. Here’s a breakdown of some key specs:

PropertyValue
Substrate Thickness1.0mm, 1.2mm, 1.5mm, 1.6mm
Copper Thickness35um, 70um
ColorMilky-white
Sheet Dimension927*1230mm, 1020*1030mm, 1044*1245mm
Dielectric Constant4.5 (depends on frequency)
Thermal ConductivityIn middle level
Working Temperature130C (highest)
Water Absorption<0.3%
FlammabilityUL94V-0

These specifications show that while CEM1 can’t handle extreme conditions like high temperatures or stress, it’s adequate for a wide range of general applications.

CEM1 vs FR4

CEM1 and FR4 are two of the most widely used PCB materials. FR4 is fiberglass-reinforced and offers greater durability and thermal performance. So why use CEM1?

The key reason is cost. CEM1 is significantly cheaper than FR4, making it a perfect choice for applications that don’t require the superior mechanical and thermal properties of FR4. For example, if you’re designing a simple consumer product, CEM1 may offer all the performance you need at a fraction of the cost.

Additionally, FR4 is typically used for multi-layer PCBs, while CEM1 is commonly found in single-layer designs. If your product doesn’t need multi-layer complexity, CEM1 can save both time and money in manufacturing.

CEM1 vs CEM3

CEM-1 and CEM-3 are comparable in some aspects but differ in specific characteristics. Both materials are impregnated with epoxy resin. CEM-1 is composed of a paper core and woven glass fabric layers, all bonded with epoxy resin. It offers easy punching, excellent electrical properties, and better flexural strength compared to paper-based laminates. This makes it a popular choice in the PCB industry, especially for single-sided boards, where it can be punched up to a thickness of .093″.

On the other hand, CEM-3 is more similar to FR-4 in terms of performance. Instead of woven glass fabric, it uses chopped glass fibers, which gives it a milky white appearance and a smoother surface. CEM-3 is flame-retardant and is typically used in double-sided and multilayer PCBs, making it a versatile alternative to FR-4. It’s a relatively new substrate material developed with characteristics similar to FR-4.

CEM-3 incorporates glass mat fibers, which provide better mechanical strength and durability compared to CEM-1. This makes CEM-3 more suitable for applications that require higher impact resistance and reliability. However, CEM-3 is generally more expensive due to its added strength. For applications where the extra strength of CEM-3 isn’t necessary, CEM-1 remains a more cost-effective option, as both materials offer similar thermal properties.

Advantages and Disadvantages of CEM1 PCB

Advantages:

  • Lower cost: The cost of CEM1 PCB is lower than that of glass fiber cloth copper clad plate, but higher than that of paper based copper clad plate.
  • ‌Good machinability: CEM1 PCB has excellent machinability and is easy to press.
  • ‌Good electrical performance and bending strength: compared with paper grades, CEM1 PCB has excellent electrical performance and higher bending strength.
  • ‌Wide range of application: suitable for electronic products with low performance requirements and low cost, such as toys and household appliances.
  • It has a suitable glass transition temperature, better heat dissipation, and electric energy storage.

‌Disadvantages:

  • Mechanical properties and heat resistance slightly inferior: compared with FR4, the mechanical properties and heat resistance of CEM1 PCB is slightly inferior.
  • ‌Limited application scenarios: mainly applicable to electronic products with low performance requirements, not suitable for high mechanical strength and heat resistance.

What are the Applications of CEM1 PCBs?

CEM1 is used in a wide variety of products that require a cost-effective yet reliable PCB solution. Here are a few typical applications:

1. Consumer Electronics: Products like calculators, remote controls, and basic home appliances often use CEM1 due to its affordability and performance for low-stress applications.

2. LED Lighting: In some low-heat LED lighting applications, CEM1 is a preferred choice because of its lightweight nature and reasonable thermal properties.

3. Automotive Electronics: Some automotive systems that don’t require high-end PCBs may opt for CEM1 due to its cost-efficiency.

4. Computers: CEM-1 PCB acts as heat redundant in PCs. Computer processors generate a lot of heat, therefore cooling PC parts like computer chips.

Which Software Is the Best When Designing CEM1 PCB?

When designing CEM1 PCBs, the right software helps optimize the layout and improve performance. Popular software options include:

  • Altium Designer: Known for its robust design tools and ease of use.
  • KiCad: An open-source solution that’s ideal for smaller projects or hobbyists.
  • EAGLE: Offers strong features for both professionals and beginners, with a user-friendly interface.

Some other software like Easy EDA, Circuit Maker also available.

Steps in Manufacturing CEM1 PCBs

The manufacturing process of CEM1 PCBs involves several steps:

  • Design and Output
  • Transfer the file to film
  • Print the image on the surface
  • Removing unnecessary copper
  • level alignment and optical inspection
  • Layer up and Bonding
  • Final Etching
  • Application of Solder Mask
  • Surface Finish
  • Silkscreen
  • Testing PCB Electronically

Why Choose Best Technology as Your CEM1 PCB Manufacturer?

Best Technology offers extensive experience in manufacturing CEM1 PCBs, delivering high-quality products at competitive prices. We understand the nuances of CEM1 material and its ideal applications. Our engineers are skilled in working with CEM1 material, ensuring your PCBs meet performance expectations. We offer pricing that fits within your budget without compromising quality. Lastly, we know how important speed is in electronics production, and we prioritize delivering your products on time.

Rogers RT Duroid 5880 | High Frequency Rogers RO5880 PCB Manufacturer
Wednesday, October 16th, 2024

What substrate is Rogers RT Duroid 5880?

Rogers RT Duroid 5880 is a high-frequency laminate specifically designed for applications where precision and low signal loss are critical. The substrate is a composite material known for its excellent performance in RF and microwave circuits. It uses a PTFE (polytetrafluoroethylene) base reinforced with glass microfibers.

The use of glass microfiber ensures the material is durable but lightweight, making it suitable for applications in which weight is a factor. Its composition is perfect for projects where high-frequency signals are involved. From defense systems to automotive radar, RT Duroid 5880 is a reliable choice. It has become the go-to substrate for engineers and designers looking for efficiency, precision, and durability.

Rogers RT Duroid 5880 | High Frequency Rogers RO5880 PCB Manufacturer

Composition of Rogers RT/duroid 5880

RT Duroid 5880 is composed of PTFE (polytetrafluoroethylene) combined with glass microfiber. PTFE provides a low dissipation factor, which reduces signal loss. This is important for maintaining high performance in RF and microwave applications. Glass microfiber reinforces the material, make it stronger without adding unnecessary weight. The composition also includes copper cladding, which is typically laminated on both sides. The copper layer helps with conductivity, ensuring signals travel efficiently across the board.

The unique combination of PTFE and glass microfiber gives RT Duroid 5880 its excellent mechanical stability. It also minimizes the effect of temperature changes, which is critical for high-frequency circuits. As a result, the material can handle extreme temperatures without affecting the performance of the PCB.

RT/duroid 5880 Specifications

The following table highlights the important specifications of Rogers RT Duroid 5880. These specs reflect the high performance of RT Duroid 5880 for complex RF and microwave tasks.

PropertyValue
Dielectric Constant (Dk)2.20 (±0.02)
Dissipation Factor (Df)0.0004 (measured at 10 GHz)
Thermal Conductivity0.20 W/m/K
Operating Temperature Range-55°C to +150°C
Water Absorption0.02%
Volume Resistivity1.7 x 10^9 MΩ·cm (minimum)
Surface Resistivity1.4 x 10^8 MΩ (minimum)
Coefficient of Thermal Expansion (CTE)46 ppm/°C (in X-Y axis)
Tensile Strength10.3 MPa
FlammabilityUL 94 V-0
Peel Strength5.0 N/mm (after soldering)

RT/duroid 5880 Thickness

RT Duroid 5880 comes in various thicknesses. Engineers can choose the right thickness depending on their project’s needs. Rogers RT/duroid 5880 laminate is commercially available in sheet stock and roll stock forms in a range of thicknesses. Here’s a list of the standard thicknesses available:

Available sheet sizes:

  • 304.8 x 457.2 mm
  • 457.2 x 609.6 mm
  • 609.6 x 914.4 mm

Standard thickness:

  • 0.127 mm (5 mils)
  • 0.254 mm (10 mils)
  • 0.381 mm (15 mils)
  • 0.508 mm (20 mils)
  • 0.787 mm (31 mils)
  • 1.524 mm (60 mils)
  • 3.175 mm (125 mils)

Available roll widths:

  • 304.8 mm
  • 609.6 mm
  • 1219.2 mm
  • Standard roll length: 76.2 meters
  • Thickness range: 0.127 mm to 1.575 mm ​

RO5880 RF PCB Advantages

Rogers RT Duroid 5880 has a lot of strengths when used in RF and microwave PCB projects:

  • Minimal Signal Loss

With a low dissipation factor of 0.0004, it reduces signal loss, which is very helpful for high-frequency systems like radar or satellite communications.

  • Strong Stability

It holds up well under temperature changes and in humid environments, keeping circuits running smoothly even in tough conditions.

  • Reliable Electrical Properties

The dielectric constant of 2.20 remains stable over a range of frequencies. This helps keep circuits working consistently without interference or signal issues.

  • Heat Tolerance

It withstands heat up to 150°C, making it a good choice for systems that need to handle higher temperatures.

  • Low Moisture Absorption

With only 0.02% water absorption, the material works well in damp environments. Outdoor systems like antennas benefit from this.

  • Ease of Manufacturing

The material is easy to work with during production, which keeps costs lower and speeds up manufacturing.

  • Chemical Resistance

The PTFE base resists damage from chemicals and solvents, making the material last longer in harsh environments like aerospace and industrial applications.

Typical Applications of High-Frequency PCB

High-frequency PCBs built with Rogers RT Duroid 5880 serve important roles across many industries:

  • Aerospace – used in radar, satellite, and navigation systems, RT Duroid 5880 supports reliable communication and tracking, even in high-pressure environments.
  • Telecommunications – in mobile networks, base stations, and antennas, high-frequency PCBs help maintain clear and fast data transmission, supporting the backbone of communication systems.
  • Medical Devices – MRI machines, wireless health monitors, and other equipment use high-frequency PCBs to keep medical data accurate and systems working seamlessly.
  • Defense – communication gear, and electronic warfare systems.
  • Automotive Systems – advanced driver assistance systems (ADAS) and vehicle radar depend on high-frequency PCBs for real-time data, making roads safer for everyone.
  • Satellite Communication – RT Duroid 5880 is frequently used in satellite systems where strong signal transmission over long distances is crucial for communication networks.

Common-Used High Frequency PCB Materials in Best Technology

At Best Technology, we use a range of top-quality materials for high-frequency PCBs, depending on the project’s needs. Some of the most popular materials include:

Material       Dielectric Constant (Dk)      Loss Tangent (Df)       Key Features  
Rogers RO4003C3.380.0027Low loss, excellent thermal stability, ideal for RF applications.
Rogers RO43503.480.0043Low loss, high thermal conductivity, suitable for microwave applications.  
RT/Duroid RO58802.940.0037Very low loss, excellent performance at high frequencies, good for multilayer designs.  
N4000-133.00.009Good thermal stability, low moisture absorption, designed for high-frequency applications.
Taconic RF-60A6.150.0027High dielectric constant, low loss, suitable for low-loss RF and microwave applications.  

Each material brings different strengths for specific applications, giving you the best options for your project.

Discuss Your High Frequency PCB Project with Us Today

If you have a high-frequency PCB project in mind, reach out to us. We’re experienced in creating high-quality PCBs that meet your exact specifications. Whether you need RF, microwave, or other types of high-frequency boards, we’ll make sure your project runs smoothly. Contact us at sales@www.bestpcbs.com today, and we’ll help you turn your plans into reality.

4 Layer PCB Layout, Stack-up, Thickness & Design Guidelines
Wednesday, October 16th, 2024

What is a 4 Layer PCB?

A 4 layer PCB is a type of circuit board that consists of four distinct layers of conductive material. Each layer serves a specific function. The layers typically include two signal layers, one ground (GND) layer, and one power (VCC) layer. Generally, through holes, buried holes, and blind holes are used to connect the internal layers. There are more buried and blind holes than 2 layer PCB boards. In addition, try not to run signal track on the two layers of VCC and GND. A 4 layer PCB offers more complex designs, better signal integrity compared to simpler designs.

4 Layer PCB Layout, Stack-up, Thickness & Design Guidelines

4 Layer PCB Stack-up

The typical stack-up configuration is as follows:

  • Top Layer (Signal Layer): This layer carries signals and connections.
  • Inner Layer 1 (Ground Plane): This layer serves as a reference for signal return paths, reducing noise and interference.
  • Inner Layer 2 (Power Plane): This layer distributes power to various components on the PCB.
  • Bottom Layer (Signal Layer): Like the top layer, it carries additional signals and connections.
4 Layer PCB Layout, Stack-up, Thickness & Design Guidelines

4 layer PCB Stack up Options

Generally, there are three main categories for preferred stack-up solutions for 4 layer PCBs:

Solution 1: The standard layer setup for common 4 layer PCBs.

TOP (signal layer)

GND1 (ground layer)

PWR1 (power layer)

BOT (signal layer)

Solution 2: Suitable for situations where key components are laid out on the BOTTOM

layer or key signals are routed on the bottom layer; generally applicable under certain restrictions.

TOP (signal layer)

PWR1 (power layer)

GND1 (ground layer)

BOT (signal layer)

Solution 3: Suitable for PCBs primarily using through-hole components, commonly

used where the power is routed in layer S2, and the BOTTOM layer serves as a ground plane, thereby forming a shielding cavity.

GND1 (ground layer)

S1 (signal layer)

S2 (signal layer)

PWR1 (power layer)

4 Layer PCB Layout, Stack-up, Thickness & Design Guidelines
Top Layer
4 Layer PCB Layout, Stack-up, Thickness & Design Guidelines
G1
4 Layer PCB Layout, Stack-up, Thickness & Design Guidelines
G2
4 Layer PCB Layout, Stack-up, Thickness & Design Guidelines
Bottom Layer

4 Layer PCB Thickness

The thickness of a 4 layer PCB can vary depending on the design requirements. Generally, a standard 4 layer PCB thickness ranges from 0.4mm to 1.6mm. The total thickness is determined by the materials used and the copper weight on each layer. A thicker PCB can offer better thermal management and mechanical stability, making it suitable for high-power applications. Here are the 4 layer PCB thickness with different thickness in Best Technology:

4 Layer PCB Layout, Stack-up, Thickness & Design Guidelines

4 Layer PCB Manufacturing Process

Cutting material and grinding → drilling positioning holes → inner layer circuit → inner layer etching → inspection → black oxide → lamination → drilling → electroless copper → outer layer circuit → tin plating, etching tin removal → secondary drilling → inspection →print solder mask→Gold-plated→Hot air leveling→print silkscreen→routing outline→Test→Inspection

Ground Plane Design in 4 Layer PCB

The ground plane in a 4 layer PCB is essential to ensuring good performance and signal integrity. Here’s how to design an effective ground plane:

1. Purpose of the Ground Plane

  • Reference Point: It provides a stable reference for signals, reducing noise and improving signal integrity.
  • Return Path: It acts as a low-resistance return path for signals, minimizing electromagnetic interference (EMI).

2. Placement in Stack-up

Typically, the ground plane is placed as one of the inner layers, often Inner Layer 1. This positioning helps shield signals on the top and bottom layers.

3. Continuous Ground Plane

Aim for a solid, uninterrupted ground plane. Breaks or cuts can introduce impedance and increase noise.

4. Vias and Connections

  • Use vias to connect components to the ground plane. Ensure that vias are placed close to component pads to minimize inductance.
  • Consider using multiple vias for high-current paths to distribute the current effectively.

5. Thermal and Electrical Considerations

Use thermal vias if heat dissipation is a concern. Place them near high-power components to spread heat away from sensitive areas. Ensure that the ground plane is thick enough to handle the expected current loads without excessive voltage drop.

6. Control EMI

  • Keep the ground plane as large as possible to effectively shield signals from external interference.
  • Route high-speed signals away from ground plane edges to minimize crosstalk.

7. Simulation and Testing

  • Use simulation tools to analyze the ground plane’s performance. Check for potential issues such as ground loops or noise.
  • After fabrication, test the PCB to ensure that the ground plane functions as intended, with minimal interference.

What is the Advantage of a 4 Layer PCB Over a 2 Layer PCB?

While 2-layer PCB boards have their advantages, multi-layer designs are more beneficial for some applications. Today Best Technology will introduce the difference between 2-layer PCB board and 4 layer PCB.

4 Layer PCB Layout, Stack-up, Thickness & Design Guidelines

1. A 4 layer PCB has an inner layer, which is laminated with PP and copper foil on both sides during the lamination process. This is pressed under high temperature and high pressure to form a multilayer board. Some circuits on the PCB 4 layer board are etched through the inner layer and pressed; the 2 layer PCB can be directly cut and drilled after production.

2. The 4 layer PCB is made of four layers of fiberglass, which can reduce the cost of the PCB, but the production efficiency is lower than that of the 2 layer PCB.

3. It is difficult for most people to distinguish a 4 layer PCB by observing the cross-section of the circuit board, but it can be identified by looking at the vias. If the same vias can be found on both sides of the PCB, or if the motherboard or graphics card is facing a light source and the vias do not allow light to pass through, then it is a 4 layer PCB.

4. The PCB 4 layer board has dense routing, with the top layer being the front and the bottom layer being the back.

5. The PCB 4 layer board can distribute wiring among multiple layers, which increases design flexibility and allows better control of differential impedance, single-ended impedance, and improved output for certain signal frequencies.

How to Design a 4 Layer PCB?

When designing a 4 layer PCB, it is important to differentiate between the power layer and the signal layer. The signal layer is a positive output, while the power layer is a negative output. This means that lines drawn on the signal layer will result in actual copper traces, whereas lines drawn on the power layer indicate the removal of copper. Essentially, drawing lines on the power layer corresponds to removing copper, while drawing lines on the signal layer represents creating copper traces. Therefore, when designing the power layer, you can use lines to divide the copper area into separate regions, which is known as “power segmentation.” Here is a simple design step of a 4 layer PCB:

1. Schematic Design and Drawing

2. After completing the schematic drawing, import it into the PCB software, and complete the layout with a simple arrangement.

3. Follow the plan to design the stack-up, paying attention to the following aspects:

  • You can generate multilayer PCB stack-ups yourself, with the default being two layers.
  • Choose the unit of measurement.
  • Pullback: This refers to the inward shrinkage of inner layers. When following the 20H rules during design, the power layer should shrink 40 to 80 mils inward compared to the reference layer. This parameter should be set accordingly.
  • After adding layers, name them appropriately, such as GND, etc.

4. Complete the routing operation. The negative layer contains a network copper area. Once the settings are complete, click OK.

In conclusion, a 4 layer PCB is a powerful tool in modern electronics, offering enhanced complexity, improved signal integrity, and better thermal management. By understanding its stack-up, thickness, and design guidelines, engineers can create reliable and efficient circuit boards. The advantages of 4 layer PCBs over 2 layer designs make them a preferred choice for many applications.

When you choose a 4 layer PCB, you’re investing in a technology that can support complex designs and improve overall performance. With the right design practices and advanced manufacturing capabilities, the potential for innovation is vast. Whether you’re developing consumer electronics, industrial equipment, or medical devices, a well-designed 4 layer PCB can make all the difference.

Can I design microvias in multilayer MCPCB?
Saturday, October 12th, 2024

What is a Microvias?

A microvia is a small hole drilled into a PCB that connects different layers. They are essential for high-density interconnections and are commonly used in advanced electronic designs. Typically, microvias equal to or less than 150 microns drilled on the PCB board with a laser. In 2013, the IPC standard changed the definition of microvias to those with an aspect ratio of 1:1. Ratio of aperture to depth (not exceeding 0.25mm). Previously, micropores were less than or equal to 0.15 mm in diameter, so they typically spanned only one layer.

Can I design microvias in multilayer MCPCB?

Because the diameter is very small compared to mechanically drilled through holes (PTH), we define them as microvias, usually connecting only one layer of the board to its adjacent layers. These through holes reduce the possibility of any type of manufacturing defect because they are laser drilled, thus reducing the possibility of any residue remaining after the process. Because of their small size and ability to connect one layer to the next, they can make dense printed circuit boards with more complex designs.

Types of Microvias

There are two types of microvias in the PCB design – stacked microvias and staggered microvias.

  • Stacked Microvias

Stacked microvias are formed by stacking multiple layers on top of each other to provide a path through which current flows. Create a hole in one layer and drill into another layer below. The top layer is welded or welded to the bottom layer to form an interconnect between the two layers. This allows for fast, efficient routing without compromising performance or reliability.

Can I design microvias in multilayer MCPCB?
  • Staggered Microvias

The interlaced microvias is aligned with the pad of the same layer, but is offset from its center by half of the pad diameter. The distance from its center to the edge of the board is also half the diameter of the pad. Staggered microvias allow you to place two through holes in a single pad without overlapping them or having to route wires on different layers together in this location. This type of microvias can be used for electrical connections to the surrounding brass pads and traces.

Can I design microvias in multilayer MCPCB?

What is the Difference Between Vias and Microvias?

Vias and microvias serve similar purposes in connecting different layers of a PCB, but they differ significantly in size and application.

1. Size

One of the most significant differences between vias and microvias is their size. Standard vias typically have a diameter greater than 150 micrometers (ÎŒm), while microvias are defined as having a diameter of 150 ÎŒm or less.

2. Design Complexity

As technology advances, the demand for higher circuit densities and more complex designs has grown. Microvias enable designers to create intricate multilayer circuits that were not possible with standard vias.

3. Layer Connection

Standard vias can connect any number of layers in a PCB, typically running from the outer layer through to the inner layers. In contrast, microvias are usually used for connecting one or two layers. Microvias are commonly employed in multilayer PCBs, where they can connect the outer layer to one or more inner layers without passing through the entire board.

4. Aspect Ratio

The aspect ratio, which is the ratio of the depth of a via to its diameter, is another important difference. Standard vias generally have lower aspect ratios, making them easier to fabricate. Microvias, due to their smaller size, often have higher aspect ratios. A typical aspect ratio for microvias ranges from 1:1 to 2:1.

5. Applications

Standard vias are commonly used in traditional PCB designs for applications where space is not as critical. They are suitable for general-purpose circuits, power distribution, and less complex layouts. In contrast, microvias are essential in high-density applications, such as smartphones, tablets, and advanced computing devices, where compact designs are necessary.

Microvias vs. Blind Via

Blind vias connect the outer layer of the PCB to one or more inner layers without penetrating the entire board. As the name suggests, these through-holes are “blind holes” because they are not visible from the other side of the PCB. Blind holes have several advantages, such as saving space on the board, enabling a more compact design, and improving signal integrity by reducing the length of the signal path.

The blind via passes through the surface layer of the PCB, extending through only a portion of the board to connect the surface layer to one or more inner layers. They are a key component in current PCB designs, allowing surface components to connect to inner layers while minimizing the number of layers required for wiring. The advantages of using blind vias including:

  • Increased density
  • Reduce the number of layers
  • Improved signal performance
  • Good for heat dissipation
  • Improve mechanical strength

Can Microvias be Designed in Multilayer MCPCB?

Yes, microvias can indeed be designed in multilayer MCPCBs. In fact, their small size and efficient design make them ideal for these types of boards. Multilayer MCPCBs often require compact interconnections to accommodate various functionalities, and microvias facilitate this need. By enabling multiple layers to connect efficiently, microvias enhance the overall performance of the MCPCB. Additionally, they contribute to improved thermal management, a critical factor in high-power applications. Their integration in multilayer designs is a significant advantage for modern electronics.

The process for using microvias in multilayer metal-based circuit boards includes the following key steps:

1. Inner laser drilling and plating: This is the first step in the production of microvias, precisely drilled by laser technology, and electroplated.

2. Resin filled: The micro-vias after electroplating are filled with resin to enhance the stability of the structure.

3. Resin grinding: Grind the orifice after the jack hole to ensure a smooth surface.

4. Electroplating: Metallize the surface of the orifice resin to achieve electrical interconnection between layers.

5. Inner circuit etching and outer layer lamination: To complete the production of the inner circuit, and the outer layer of laser drilling and graphic plating, and finally realize the production of multi-layer circuit board.

MCPCB Material in Best Technology

Can I design microvias in multilayer MCPCB?

MCPCB Prototype Lead Time (Vary Depends on the MCPCB Design)

Can I design microvias in multilayer MCPCB?
How to develop PCB boards for beginners?
Saturday, October 12th, 2024

Designing and developing printed circuit boards (PCBs) may sound complex, but it’s an exciting process that is within reach, even for beginners. With the right approach, software tools, and an understanding of the basic principles, you can create functional and efficient PCBs.

How to develop PCB boards for beginners?

Is PCB Design Difficult?

The difficulty of PCB design depends on the learning objectives and depth. ‌ If it is just the initial stage, do some simple circuit board design, then it is relatively easy. But if you want to go deep and get to expert level, in areas as diverse as pcb layout, signal integrity, electromagnetic compatibility, impedance design, and more, then you need to put in more work.

For beginners, choosing the right software and learning resources is very important. PADS from Protel, Altium Designer (AD) and Mentor Graphics are commonly used PCB design software. Protel software is simple and easy to learn, suitable for beginners to use; AD and PADS are powerful, but the operation is complex, suitable for the design of complex circuit boards.

What is the Basic Rule of PCB Design?

The key to good PCB design is layout organization. Keep the design simple, especially at the beginning. Here are a few basic rules to follow:

  • Control Trace Length

Controlling the length of traces means adhering to the rule of keeping traces as short as possible in PCB design to avoid unnecessary interference caused by long traces. This is especially crucial for important signal lines, such as clock signal traces, which should be placed very close to the oscillator. When driving multiple devices, the network should be determined based on specific circumstances.

  • Avoid Forming Self-Inductive Loops

In PCB design, it is important to pay attention to signal lines forming self-inductive loops between different layers, particularly in multilayer boards. The chances of forming self-inductive loops increase when routing signal lines between layers, and these loops can cause radiated interference.

  • Minimize Ground Loop Principle

The principle of minimizing ground loops is to keep the signal lines and their loops as small as possible. The smaller the loop area, the less external radiation and interference it experiences. When defining ground planes, consider the distribution of the ground plane and important signal lines to prevent issues caused by ground plane cuts.

In double-layer board designs, while leaving sufficient space for the power supply, the remaining areas should be filled with reference ground and include some necessary vias to effectively connect signals on both sides. Ground isolation should be used for key signals. For designs with higher frequencies, special attention should be paid to the signal loop problems of the ground plane, and multilayer boards are recommended.

  • High-Speed Signal Shielding Design

The relevant ground loop rules are also aimed at minimizing signal loop areas and are mainly used for important signals such as clock and synchronous signals. For particularly important and high-frequency signals, consider using a shielded structure design with copper coaxial cables. This means isolating the line from the ground on all sides while effectively grounding the shield layer and ensuring its connection with the ground plane.

  • Avoid the “Antenna Effect”

Generally, routing with one end suspended is not allowed to avoid the “antenna effect,” which reduces unnecessary interference radiation and reception; otherwise, it may lead to unpredictable results.

  • Chamfer Rule

PCB design should avoid sharp corners and right angles to prevent unnecessary radiation and poor manufacturing performance. The angle between all traces should be ≄135°.

  • Avoid Overlapping Different Power Layers

Different power layers should be spatially separated to reduce interference between them, especially between power supplies with significant voltage differences. Issues arising from overlapping power planes must be avoided, and if unavoidable, consider using an isolated ground layer.

  • Avoid Via Proximity to SMT Pads

If vias are not covered with a solder plug, they can easily be placed too close to SMT pads during layout. This can cause solder to flow through the via to the other side of the PCB during reflow, resulting in insufficient solder on the SMT pads and causing issues like cold solder joints. It is generally recommended to maintain a distance of more than 25 mils from the edge of the via to the SMT pad and to apply solder mask over the via.

  • Do Not Route Traces Wider than SMT Pads Directly into the Pads

If traces are wider than the pads, the window area of the SMT pads generally expands beyond the pad size. This means that if the solder paste on the pad is slightly insufficient during reflow, there is a risk of cold solder joints. Using traces that are slightly larger or slightly smaller than the pads can also help avoid excessive heat dissipation during soldering.

  • Do Not Place Components Too Close to the Board Edge

During the assembly and soldering stages of the PCB, the board will be transported through various processing areas, such as solder paste application and pick-and-place machines, followed by reflow soldering. Therefore, when designing the PCB, at least one side must leave enough space for a processing margin of at least 3 mm in width and 50 mm in length. There should be no interference between components and leads within the processing margin, as this could affect the normal transport of the PCB.

If the layout cannot accommodate this, consider adding an independent 3 mm processing margin or panel. (Note: SMT components cannot be placed within 5 mm of the edge on either side of the processing panel to facilitate reflow soldering.) If the components on your PCB are hand-soldered, you can disregard this requirement.

  • Keep Solder Mask Window Sizes Consistent

The solder mask layer needs openings for the pads. These openings prevent the solder mask from covering the pad area, protecting the PCB circuit from oxidation and short circuits during soldering. Typically, a solder mask layer covers the outer layers of the PCB. Common solder masks are green (though black, red, yellow, and blue are also used).

Solder should not be applied to pads to avoid solder paste sticking. To avoid the solder mask layer interfering with pad solderability due to process tolerances, it is common to design a solder mask opening that is larger than the pad by approximately 0.1 mm (4 mil). However, it is also acceptable to keep the solder mask opening area the same size as the pad dimensions; the factory will process it uniformly for you.

  • Reduce EMI Interference

Every PCB can be affected by EMI or become a source of interference. As part of the engineering design, special attention is required during PCB layout:

  • Increase the spacing between high-frequency traces and low-frequency or analog traces.
  • Minimize the return path for high-speed signals and ensure they do not cross split planes. Smaller current loops reduce EMI radiation intensity.
  • High-speed differential signals should be routed in parallel and have equal lengths; otherwise, they will offset the noise suppression characteristics of the differential pair.
  • Avoid using vias on high-speed traces, as they may lead to EMI emissions.

What Files Are Needed to Manufacture a PCB?

When you’re ready to manufacture your PCB, you will need to generate specific files for the fabrication process. The most common file format used by PCB manufacturers is the Gerber file. Here are some other important files that needed to submitted to manufacturer:

1. Gerber Files – your design files, include the design layout, detailing copper layers, solder masks, and silkscreen layers.

2. Drill Files – specify the locations and sizes of holes for vias and component leads.

3. Bill of Materials (BOM) – a list of all components required for the board, including part numbers and quantities.

4. Pick and Place File – guides the automated machines on where to place each component on the PCB.

What Software to Use for PCB Design?

Choosing the right software can make the design process much easier, especially for beginners. Here are a few commonly used PCB design tools:

  • KiCad: This is a free, open-source software that’s great for both beginners and professionals. It has a user-friendly interface and includes a schematic editor, PCB layout, and 3D viewer.
  • Eagle: Popular among hobbyists, Eagle offers a simple design process and an extensive component library. It’s free for small designs but has premium features for more advanced projects.
  • Altium Designer: For more complex projects, Altium Designer is an industry-standard tool with advanced features. While it’s pricier, it offers professional-grade tools for high-level PCB design.

How Do You Manufacture a PCB Board?

Manufacturing a PCB involves several steps, and understanding the process helps ensure your design is ready for production. Here’s a simplified overview:

Step 1: Designing the PCB

Using PCB design software to create the PCB layout. The design process includes defining the schematic, component placement, and trace routing. Designers must consider factors such as signal integrity, power distribution, and thermal management.

Step 2: Design Review and Engineering Questions

Once the initial design is complete, a thorough review is conducted. This includes checking for design rule violations, verifying component footprints, and ensuring all connections are correct. Engineers may raise questions about potential performance issues, manufacturability, and compliance with regulatory standards. Feedback from this review may lead to modifications to optimize the design.

Step 3: Printing the PCB Design

After finalizing the design, the PCB layout is printed onto a transparent film, which will be used as a photomask for the etching process. This film represents the layers of the PCB, including copper and solder mask layers.

Step 4: Printing the Copper for the Interior Layer

The copper layers are printed onto the laminate using a photoresist process. The photoresist is applied to the copper-clad laminate, and the printed film is exposed to UV light. The areas that are exposed to light will become soluble and can be washed away, leaving behind a copper pattern that matches the PCB design.

Step 5: Etch the Inner Layers or Core to Remove Copper

The exposed copper is etched away using a chemical process, leaving only the desired copper traces. This step must be carefully controlled to ensure the traces are of the correct width and spacing, as specified in the design. The etching process can be done using either chemical etching or laser etching.

Step 6: Layer Alignment

Once the inner layers are etched, they must be aligned correctly for lamination.

Step 7: Automated Optical Inspection (AOI)

Automated Optical Inspection is performed to check the accuracy of the printed copper layers. Any discrepancies, such as missing or misaligned traces, can be identified and corrected before proceeding to the next steps.

Step 8: Laminating the PCB Layers

The aligned layers are then laminated together using heat and pressure. It combines the different layers, including copper, dielectric, and solder mask layers, into a single, solid structure.

Step 9: Drilling

Once the layers are laminated, holes are drilled for vias and mounting holes. The drilling process requires precision, as these holes must align perfectly with the design specifications. Computer-controlled drilling machines are typically used to achieve the necessary accuracy.

Step 10: PCB Plating

After drilling, the PCB goes through an electroplating process where a conductive layer is added to the walls of the drilled holes.

Step 11: Outer Layer Imaging

Similar to the inner layers, the outer layers are prepared for imaging. A photoresist is applied, and the printed film of the outer layer design is aligned and exposed to UV light. The unwanted areas are washed away, leaving a pattern on the copper layer.

Step 12: Outer Layer Etching

The outer copper layers are then etched to remove the unprotected copper, leaving behind the desired copper traces.

Step 13: Outer Layer AOI

Another round of Automated Optical Inspection is conducted on the outer layers to ensure that the copper traces and pads are correctly formed.

Step 14: Solder Mask Application

A solder mask layer is applied to protect the PCB and prevent solder from bridging between components during assembly. The solder mask is typically a green epoxy coating, but it can also be available in other colors. The areas where solder is needed are left exposed.

Step 15: Silkscreen Application

Silkscreen printing is used to apply labels, component designators, logos, and other markings onto the PCB surface.

Step 16: Finishing the PCB

The finishing process includes applying surface finishes such as HASL (Hot Air Solder Leveling), ENIG (Electroless Nickel Immersion Gold), or OSP (Organic Solderability Preservative) and so many surface treatments.

Step 17: Electrical Reliability Test (E-test)

Before packaging, the PCBs undergo electrical testing to ensure that all circuits function correctly. This may include continuity testing, insulation resistance testing, and high-voltage testing.

Step 18: Profiling and Route Out

The final PCB is profiled and routed to its specific shape, including cutting out the edges and any slots or cutouts required.

Step 19: Quality Check and Visual Inspection

A final quality check and visual inspection are performed to ensure that all specifications have been met. Examining for any physical defects, such as scratches, solder mask misalignment, or improper solder application.

Step 20: Packaging and Delivery

Once all checks are complete, the PCBs are cleaned, packaged, and prepared for delivery. Proper packaging is essential to protect the PCBs during shipping.

What Is the Cheapest PCB Finish?

The cheapest finish is HASL, which is also widely used. HASL applies a thin layer of molten solder to the surface, providing good protection and easy solderability. However, it’s not always suitable for fine-pitch components or designs requiring a flat surface. Other options, such as ENIG (Electroless Nickel Immersion Gold), are more expensive but provide a smoother, more durable finish for advanced designs.

Developing a PCB for the first time can feel like a daunting task, but by understanding the basics and using the right tools, it’s a process that anyone can learn. From following simple design rules to choosing affordable software and finishes, creating a PCB can be a good experience. Working closely with manufacturers and learning through trial and error will sharpen your skills over time.

How Much Does It Cost to Get a PCB Board Made?

The cost of producing a PCB depends on several factors, such as the size, number of layers, material used, and whether you’re doing a prototype run or full production. For a simple, single-sided board, costs can start as low as $10 to $20 per board, but more complex, multi-layer designs can cost upwards of $100 or more per board.

Additional costs may include shipping, testing, and assembly if you are having components mounted by the manufacturer. It’s always a good idea to get quotes from multiple manufacturers and consider both cost and quality.

If you don’t want to develop a PCB board by yourself, choosing a reliable EMS PCB manufacturer like Best Technology. We are engaging in PCB manufacturing over 18 years, we deeply understand every design rules and know which one is best for manufacturing. Best Team offer full turnkey PCB & PCBA service for over the world. We can help to PCB design, PCB layout, PCB manufacturing, components sourcing, PCB assembly, box building, and function testing. Give us your ideal, we can make it come true!

What is Thermal Conductivity of Ceramic Materials?
Thursday, October 10th, 2024

What is Thermal Conductivity?

Thermal conductivity refers to a material’s ability to conduct heat. It’s a physical property that indicates how easily heat can pass through a substance when there is a temperature difference. In scientific terms, thermal conductivity is measured in watts per meter-kelvin (W/m·K), describing how much heat (in watts) is transferred through a material for every meter of thickness when there’s a one-degree temperature difference across it.

What is Thermal Conductivity of Ceramic Materials?

For ceramic materials, thermal conductivity plays a pivotal role in determining their usability in various industrial and electronic applications. Materials with high thermal conductivity can transfer heat quickly, so it is important in situations where heat must be dissipated rapidly to avoid damage to components, like in electronics or aerospace industries. On the other hand, materials with low thermal conductivity are used for thermal insulation, preventing unwanted heat transfer in applications like kiln linings or fireproofing.

Do Ceramic Materials Have High Thermal Conductivity?

Ceramic materials are generally known for their thermal insulation properties, meaning they typically have low thermal conductivity. However, not all ceramics are insulators. There are a few exceptions with significantly higher thermal conductivity, making them valuable for heat-dissipating applications.

Traditional ceramics such as alumina and zirconia are typically poor conductors of heat due to their atomic structure, which restricts the movement of heat. However, advanced ceramics like aluminum nitride (AlN) and silicon carbide (SiC) exhibit impressive levels of thermal conductivity. These materials are increasingly being used in industries like electronics, aerospace, and automotive manufacturing, where managing heat efficiently is critical to the performance and safety of equipment.

High thermal conductivity ceramics, though less common, have opened new avenues for using ceramic materials in areas where heat transfer was traditionally a limiting factor. So, while most ceramics are not known for high thermal conductivity, advancements in ceramic technology have led to the development of high-performance materials that challenge this generalization.

Why is Thermal Conductivity Important for Ceramic Materials?

Thermal conductivity in ceramics is a key factor that dictates where and how these materials can be used. There are several reasons why thermal conductivity matters for ceramic materials:

Heat Management in Electronics

In electronics, high thermal conductivity ceramics are crucial to ensure that components do not overheat during operation. Many electronic devices produce heat as a byproduct, and if this heat is not managed properly, it can lead to equipment failures. Ceramic materials like AlN and BeO are widely used in applications such as LED packaging, power electronics, and semiconductor manufacturing due to their ability to transfer heat away from sensitive components quickly and efficiently.

Thermal Insulation

On the flip side, some ceramic materials with low thermal conductivity are perfect for insulation. In industries like metallurgy or construction, materials like silicon oxide or zirconia are used to keep heat in or out, making them excellent choices for furnace linings, kilns, and thermal barrier coatings.

Thermal Shock Resistance

Many ceramics with low thermal conductivity also possess high thermal shock resistance, meaning they can withstand rapid temperature changes without cracking or breaking. This is important in applications such as aerospace, where materials are often exposed to extreme temperature variations.

Energy Efficiency

Thermal conductivity affects the energy efficiency of systems. In applications like heating elements, components with good thermal conductivity allow heat to be transferred more effectively, leading to better energy efficiency and lower operational costs. Ceramics that balance both thermal insulation and conductivity provide optimized energy management, crucial for industrial processes.

5 Typical High Thermal Conductivity Ceramic Materials

  • Aluminum Nitride (AlN)

Thermal Conductivity: ~170-230 W/m·K

Aluminum nitride is one of the most well-known ceramics for high thermal conductivity. It is electrically insulating, which makes it an ideal material for electronic substrates and heat sinks in devices like LEDs and power modules. Its ability to rapidly dissipate heat while maintaining electrical isolation makes it a popular choice in electronics where heat management is critical.

What is Thermal Conductivity of Ceramic Materials?
  • Silicon Carbide (SiC)

Thermal Conductivity: ~120-270 W/m·K

Silicon carbide is not only known for its excellent thermal conductivity but also its incredible hardness and mechanical strength. It is used in high-temperature applications, such as in gas turbines and heat exchangers. Its ability to withstand harsh conditions while transferring heat efficiently makes it invaluable in aerospace and automotive industries.

What is Thermal Conductivity of Ceramic Materials?
  • Beryllium Oxide (BeO)

Thermal Conductivity: ~200-330 W/m·K

Beryllium oxide offers one of the highest thermal conductivities among ceramics, rivaling some metals. Its superior ability to conduct heat while remaining electrically insulating makes it ideal for high-performance electronic devices. However, its use is limited due to the toxic nature of beryllium, requiring careful handling during manufacturing.

What is Thermal Conductivity of Ceramic Materials?
  • Alumina (Al2O3)

Thermal Conductivity: ~20-35 W/m·K

Alumina is a widely used ceramic due to its good combination of thermal conductivity, mechanical strength, and electrical insulation. Though not as high in thermal conductivity as AlN or SiC, alumina’s affordability and versatility make it a common choice in many industrial applications, including substrates for electronics and thermal barriers.

What is Thermal Conductivity of Ceramic Materials?
  • Silicon Nitride (Si3N4)

Thermal Conductivity: ~20-30 W/m·K

Silicon nitride is a material prized for its thermal shock resistance and mechanical strength. Though it does not have the highest thermal conductivity, its ability to withstand extreme temperatures and thermal cycling makes it valuable in engines and high-performance bearings.

What is Thermal Conductivity of Ceramic Materials?

What Ceramic Materials Are Best for Thermal Conductivity?

Aluminum nitride is one of the most suitable ceramic materials for conducting heat. ‌ aluminum nitride (AlN) has a thermal conductivity of 170-230 W/mK, is one of the best thermal conductivity ceramic substrate materials, especially suitable for high power density and high-frequency electronic devices heat. Aluminum nitride is suitable for heat conduction, mainly for the following reasons:

1. High thermal conductivity: aluminum nitride has extremely high thermal conductivity and can effectively transfer heat from one area to another.

‌2. Excellent mechanical properties: aluminum nitride not only has good thermal conductivity, but also has high mechanical strength and chemical stability, can maintain the stability of its structure and properties in a variety of environments.

‌3. Wide application: aluminum nitride is widely used in the heat dissipation of high power density electronic devices and high-frequency electronic devices to meet the needs of modern electronic equipment for efficient heat dissipation.

What are the Thermal Properties of Ceramic Materials?

The thermal properties of ceramic materials mainly include melting point, heat capacity, thermal expansion and thermal conductivity. ‌ The melting point of ceramic materials is generally higher than that of metals, up to 3000℃ or more, and has excellent chemical stability at high temperatures‌.

The heat capacity of ceramic materials refers to the heat required to increase the temperature of ceramic materials by 1℃ per unit mass. Ceramic has a lower heat capacity, which means that it is less able to absorb heat when heated‌.

The coefficient of thermal expansion of ceramic materials is small, much lower than that of metal. This means that when the temperature changes, the size of the ceramic changes less and has good dimensional stability.

The thermal conductivity of ceramic materials is lower than that of metal materials, but its thermal conductivity depends on the specific type of ceramic. Some ceramics are good thermal insulation materials, while some ceramics are good thermal conductivity materials, such as boron nitride and silicon carbide ceramics.

Your Most Reliable Ceramic PCB Manufacturer – Best Technology

When it comes to finding a reliable manufacturer for ceramic PCBs, Best Technology stands out in the market. As a leader of ceramic material and ceramic PCB manufacturer, Best Technology has over 18 years experience, we are so confident that we can provide the highest quality and high specification PCB for you! Backing up with a group of professional engineers, and well established quality system. Best Technology has grown to become a major PCB manufacturer in Asia to serve in diverse customers base. At Best Technology, you can enjoy a full turn-key service from IC substrate design, prototyping, mass production and ceramic PCB assembly.

Whether you need ceramic materials with high thermal conductivity for your electronics, or specialized products for unique applications, we have the expertise and the technology to deliver. Trust Best Technology to provide you with the best in ceramic PCB manufacturing, ensuring that your projects are completed to the highest standards.

Aluminum Nitride PCB | Aluminum Nitride Ceramic PCB Design
Thursday, October 10th, 2024

What is Aluminum Nitride PCB?

Aluminum nitride PCB also known as Aluminum nitride ceramic PCB or short for AlN PCB. It is a high-performance circuit board made from aluminum nitride ceramic, a material known for its exceptional thermal conductivity and electrical insulation properties. These boards are commonly used in industries where efficient heat dissipation is crucial, such as in power electronics, LED applications, and high-frequency devices. AlN PCBs are gaining popularity due to their ability to withstand extreme temperatures.

Aluminum Nitride PCB | Aluminum Nitride Ceramic PCB

Benefits of AlN PCBs

One of the key advantages of AlN PCBs is their excellent thermal conductivity, which helps prevent overheating in electronic components. With exceptional thermal conductivity of 170 W/mK, strong dielectric strength, and a low thermal expansion coefficient (CTE <4 ppm/°C), AlN is widely used in applications like high-power LEDs, lasers, high-current switches, and even ultra-low temperature vacuum electronics such as those in quantum computing. In addition to these features, AlN offers the same benefits as other ceramic materials, including rigidity, environmental and chemical resistance, and 0% water absorption.

Key reasons for choosing Aluminum Nitride over other PCB materials include:

  • Outstanding thermal conductivity of 170 W/mK
  • Excellent dielectric properties
  • High operating temperatures exceeding 350°C
  • Low thermal expansion coefficient (<4 ppm/°C)
  • Compact designs due to better integration
  • Hermetically sealed packages with 0% water absorption
  • Minimal to no outgassing

What is the Thermal Conductivity of Aluminum Nitride PCB?

‌The thermal conductivity of aluminum nitride PCB ranges from 170-230W/(m·K).

The high thermal conductivity of aluminum nitride PCB is due to its unique structure and chemical composition. The thermal conductivity of aluminum nitride ceramic substrate is 2-3 times higher than that of traditional alumina ceramics and silicon-based ceramics, and 10-20 times higher than that of titanium substrate. This high thermal conductivity allows them to effectively dissipate heat from high-power electronic components, preventing overheating and ensuring stable performance. The ability to manage heat efficiently makes AlN PCBs an ideal choice for applications that generate a significant amount of heat, such as power modules, LEDs, and RF components. In comparison to other materials like aluminum oxide, which has lower thermal conductivity (around 20-30 W/mK), aluminum nitride stands out as a top choice for heat-sensitive applications.

Factors affect thermal conductivity of AlN PCB

Although the theoretical thermal conductivity of AlN is extremely high, its performance in practical applications is limited by a number of factors, mainly including:

  • Microstructure

Phonon scattering is a key mechanism for heat conduction. Grain boundaries, interfaces, second phases, and defects can all affect the mean free path of phonons, thereby influencing thermal conductivity. High-purity, low-defect single-crystal AlN has a longer phonon mean free path and higher thermal conductivity.

  • Oxygen Impurity Content

AlN’s strong affinity with oxygen leads to the easy introduction of oxygen impurities, which form alumina films and lattice defects, such as aluminum vacancies. These significantly reduce the phonon mean free path, lowering thermal conductivity. When the oxygen concentration is below 0.75%, oxygen atoms primarily replace nitrogen atoms in the lattice; however, exceeding this concentration causes aluminum vacancies to disappear and results in the formation of extended defects, further affecting thermal conductivity.

  • Sintering Process and Additives

By selecting appropriate sintering additives (such as Y₂O₃-Li₂O, Y₂O₃-CaC₂ composite systems), densification can be achieved at lower temperatures, while reducing the formation of oxygen impurities and second phases, effectively improving the thermal conductivity of AlN ceramics. These additives help purify grain boundaries and optimize the microstructure, facilitating more efficient phonon transmission.

What is Aluminum Nitride PCB Used For?

Aluminum nitride as a stable hexagonal wurtzite covalent bond compound, has shown extensive application potential in the field of electronics and optoelectronics due to its unique physical and chemical properties. Its crystal structure takes AlN4 tetrahedron as the basic unit, space group P63mc, belongs to the hexagonal crystal system, which gives AlN a series of excellent properties and use in advanced applications.

Aluminum Nitride PCB | Aluminum Nitride Ceramic PCB

Some common applications include:

  • Optical Communication
  • Integrated Circuits and High-Power Electronic Devices
  • Power Electronics
  • Wafer chips
  • Epoxy Resin Packaging
  • Optical Devices and Piezoelectric Devices
  • Industrial Materials
  • Acoustic Devices
  • Aerospace
  • Military

Why is Aluminum Nitride Expensive?

The high cost of aluminum nitride PCBs stems from several factors.

First of all, the raw material cost of aluminum nitride PCB is higher. The preparation of aluminum nitride powder requires high purity raw materials, synthesis methods include direct nitriding method, carbothermal reduction method, self-propagating high temperature synthesis and chemical vapor deposition method, etc. These methods have high requirements on equipment and technology, resulting in higher costs.

Secondly, the production process is complicated. The preparation process of aluminum nitride PCB is complex, including multiple steps such as molding and sintering, which has high requirements for equipment and technology and a high production threshold.

Finally, the market demand is large. Aluminum nitride PCB in power electronics, communication equipment, automotive electronics and other fields have a wide range of applications, especially in high power, high frequency and other occasions, its excellent heat dissipation and insulation performance can not be replaced, resulting in short supply in the market, the price of natural rising.

Aluminum Nitride PCB vs. Alumina Oxide PCB

Both aluminum nitride (AlN) and alumina oxide (Al2O3) are ceramic materials used in PCB manufacturing, but they differ significantly in terms of performance. AlN offers superior thermal conductivity, typically 170-230 W/mK, compared to aluminum oxide’s lower range of 20-30 W/mK. This makes AlN the better option for applications requiring efficient heat dissipation, such as high-power electronics and LED lighting.

However, aluminum oxide is more cost-effective and is often used in applications where high thermal conductivity is not as crucial. While Al2O3 provides good electrical insulation and is easier to produce, it may not perform as well in heat-sensitive environments as AlN. Therefore, the choice between AlN and Al2O3 depends on the specific thermal and budgetary requirements of the application. Here are the parameters of AlN and Al2O3 materials:

ParameterAluminum Nitride (AlN)Alumina Oxide (Al2O3)
Thermal conductivity170-230 W/m.k24-30 W/m.k
Dielectric constant8.89.2-10
Dielectric strength15-25kV/mm10-15kV/mm
Temperature resistance1000-1500C1000-1200C
CTE4.0 ppm/K6.5-7 ppm/K
Flexural strength450MPa320MPa
Dielectric breakdown voltage14 V/m10 V/m

AlN Ceramic PCB Design Considerations

When designing an aluminum nitride PCB, several factors need to be considered to optimize performance:

1. Trace Width

The trace width on AlN PCBs should be a minimum of 10 mils. This ensures that the conductor cross-section is sufficient to handle the current and heat dissipation needs. Given the thermal advantages of AlN, wider traces help in spreading heat more efficiently, minimizing the risk of overheating in power-dense applications.

2. Trace Clearance

Clearances between adjacent traces should be at least 8 to 10 mils. AlN PCBs often work with higher voltage levels, making spacing critical to prevent arcing or dielectric breakdown. In high-power designs, careful spacing between traces reduces the likelihood of signal interference and maintains the board’s insulation integrity.

3. Via Pads

For via pads, a minimum diameter of 16 mils is recommended. This provides sufficient area for stable soldering and ensures proper electrical connection through the via. Depending on the board’s application, larger via pads may be necessary to accommodate higher currents or thermal dissipation needs. Via sizing should also account for assembly techniques, such as reflow soldering or thermal management features, like thermal vias, which enhance heat transfer away from components.

4. Pad Geometry Adjustments

Unlike FR-4 designs, AlN PCBs often require specific adjustments in pad geometries. The mechanical and thermal properties of AlN are quite different from those of traditional PCBs. The expansion rate, hardness, and substrate fragility mean that pad designs should allow for thermal expansion and contraction without causing stress fractures. Proper pad design also ensures better solder joint reliability, particularly for components exposed to continuous thermal cycling.

5. Gold Plating for Wire Bonding Pads

In high-performance applications, wire bonding is often used, and gold plating is a preferred surface finish for wire bonding pads. The use of gold provides a stable, corrosion-resistant surface that improves bond integrity and longevity. Wire bonding is especially critical in high-frequency, high-reliability devices, where the connections must maintain integrity under thermal stress or in harsh environments.

Aluminum Nitride PCB | Aluminum Nitride Ceramic PCB

6. Component and Solder Matching

All components and solder materials must match the electrical and mechanical properties of the AlN substrate. Mismatches in thermal expansion between the PCB material and components can lead to stress, causing cracking or delamination. It’s important to select components and solder that can withstand high temperatures and thermal cycles while maintaining compatibility with AlN’s characteristics, especially in applications like power electronics and RF circuits.

7. Hermetic Sealing and Height Restrictions

For applications requiring hermetic sealing, such as aerospace or medical devices, height restrictions may apply to the components on the PCB. Hermetic seals protect against moisture and environmental contaminants, ensuring long-term reliability in sensitive applications. The overall component height should be kept in line with the sealing requirements, and compact designs are often necessary to meet stringent packaging constraints.

8. Thermal Expansion Management

When attaching large dies or high-power devices, it’s crucial to model and account for thermal expansion. Even though AlN has a low thermal expansion coefficient (<4 ppm/°C), the difference in expansion rates between components and the substrate can create mechanical stress, especially during thermal cycling. Careful design, including flexible connections or underfill materials, can help mitigate these effects.

9. Thermal Vias

Thermal vias are essential for managing heat in high-power applications. By placing thermal vias directly underneath hot components, heat can be efficiently transferred away from sensitive areas, extending the lifespan of both the components and the PCB itself. In many designs, a network of thermal vias is integrated with heat sinks or spreaders to further improve heat dissipation.

10. Surface Finishes and Coatings

Aluminum nitride PCBs can benefit from surface finishes such as electroless nickel immersion gold (ENIG) or immersion silver, which protect the copper traces from oxidation and provide excellent solderability. The choice of surface finish may also depend on the specific application environment and the reliability requirements, especially in high-power or high-frequency circuits.

FAQs About AlN PCBs

1. How durable are aluminum nitride PCBs?

    AlN PCBs are highly durable and can withstand extreme temperatures and harsh environments.

    2. Can AlN PCBs be used in high-frequency applications?

    Yes, aluminum nitride PCBs are well-suited for high-frequency and high-speed applications due to their excellent electrical insulation and low signal loss.

    3. Are aluminum nitride PCBs environmentally friendly?

    While the production process can be resource-intensive, AlN PCBs offer longer lifespans and higher efficiency, which can reduce the environmental impact over time.

    4. How do AlN PCBs compare with metal-core PCBs?

    Metal-core PCBs, such as those with an aluminum core, provide good thermal management but lack the superior electrical insulation of AlN PCBs. AlN PCBs are preferred for applications requiring both high thermal conductivity and insulation.

    5. What industries typically use aluminum nitride PCBs?

    Industries like power electronics, aerospace, automotive, and telecommunications commonly use AlN PCBs for their high-performance needs.

    2 Layer Aluminum PCB | Metal Core PCB Manufacturer
    Wednesday, October 9th, 2024

    What is a 2 Layer Aluminum PCB?

    A 2-layer aluminum PCB is a type of metal core circuit board that contains two conductive layers, usually copper, with an aluminum core or base material. Aluminum PCBs are used for their excellent heat dissipation properties, and always used in high-power applications like LED lighting, power supplies, and automotive systems. The aluminum base offers better thermal management than standard FR4 PCBs. In a 2-layer aluminum PCB, the two conductive copper layers allow more complex routing for electrical signals compared to single-layer boards.

    2 Layer Aluminum PCB | Metal Core PCB Manufacturer

    2 Layer Aluminum PCB Stack-Up

    The stack-up of a 2-layer aluminum PCB consists of the following:

    • Top Copper Layer: This is where the signal traces and components are located. It can vary in thickness, depending on current-carrying requirements.
    • Dielectric Layer: A layer of insulation that separates the top copper layer from the aluminum core. It plays a key role in electrical isolation and heat transfer.
    • Aluminum Base: This core provides structural support and excellent heat dissipation properties. It also serves as the grounding plane in some designs.
    • Bottom Copper Layer: The second conductive layer allows for more advanced routing.
    2 Layer Aluminum PCB | Metal Core PCB Manufacturer

    How Thick is a 2 Layer PCB Layer?

    The thickness of a 2-layer aluminum PCB can vary depending on the specific design requirements, but typically, the copper layer is about 1 to 2 ounces (35 to 70 microns) thick. The aluminum base itself is thicker, usually between 1.0 mm and 3.0 mm, depending on the board’s required rigidity and heat dissipation needs. The overall board thickness generally ranges between 1.2 mm and 3.2 mm.

    A thicker aluminum core improves heat transfer, but the board’s thickness must also align with the product’s mechanical and electrical requirements. Designers often have to balance between sufficient thermal performance and the overall board size for practical applications.

    Is Thicker Aluminum PCB have Better Heat Dissipation?

    Generally speaking, the thinner the thickness of the aluminum PCB, the faster the heat conduction speed. The thicker the thickness of the aluminum PCB, the slower the heat conduction rate. The thermal conductivity of aluminum-based circuit board mainly depends on its material and structure. Although thickness affects the path length of heat conduction, the more critical factors are the thermal conductivity and structural design of the material. For example, high thermal conductivity materials such as copper, silver and other high thermal conductivity materials will significantly improve the thermal conductivity of aluminum substrate. In addition, the thickness and thermal conductivity of the insulation layer will also affect the overall thermal conductivity effect ‌.

    Specifically, the thermal conductivity of the aluminum-based circuit board is also related to the thickness of its insulation layer. The thicker the insulation layer, although it can withstand higher voltage, it will also reduce the heat transfer efficiency. Therefore, choosing the appropriate insulation layer thickness and materials with high thermal conductivity is the key to ensuring efficient thermal conductivity of aluminum-based circuit boards ‌.

    2 Layers Aluminum PCB vs. Double Sided Aluminum PCB

    Though the terms “2 layers aluminum PCB” and “double-sided aluminum PCB” might sound similar, there are slight differences.

    A 2-layer aluminum PCB contains two conductive copper layers. These layers can be arranged to handle signal routing and ground planes separately. In contrast, a double-sided aluminum PCB typically has one copper layer on either side of the aluminum core, offering less flexibility in routing. Here is the stack up of double sided aluminum PCB:

    2 Layer Aluminum PCB | Metal Core PCB Manufacturer

    How Much Does Aluminum PCB Cost?

    The cost of an aluminum PCB, including a 2-layer version, depends on several factors such as the board’s thickness, copper weight, design complexity, and production volume. On average, 2-layer aluminum PCBs cost more than single-sided aluminum PCBs because of the additional copper layer and routing complexity.

    For small orders, prices might range between $5 and $15 per square foot. For larger production runs, costs can decrease significantly due to economies of scale. Factors like the thickness of the aluminum base and copper layer, as well as additional features like surface finishes, can also influence the price.

    While aluminum PCBs are more expensive than standard FR4 boards, their enhanced thermal performance can reduce overall system costs by improving reliability and reducing the need for additional cooling measures.

    How Many Layers Should a PCB Have?

    The number of layers a PCB should have depends on the complexity of the design. For simple applications like LED lighting or power conversion, a 2-layer aluminum PCB is often sufficient. It provides more routing flexibility than a single-layer board while still offering effective heat dissipation.

    For more complex designs requiring high-density interconnections or additional functionality, a multi-layer PCB with three or more layers might be necessary. However, multi-layer aluminum PCBs are rare because their primary function is thermal management, which is typically solved within one or two layers. The decision to use more layers depends on the specific application, power requirements, and signal integrity needed in the design.

    Aluminum PCB Design Guidelines

    When designing a 2-layer aluminum PCB, several factors must be considered to maximize performance:

    • Thermal Management: Since aluminum PCBs are chosen for their thermal properties, optimizing heat dissipation is critical. Components that generate significant heat should be placed near the aluminum core, allowing for faster heat transfer.
    • Copper Thickness: The copper thickness should match the current-carrying requirements of the design. Using thicker copper can help manage higher current loads, but it also increases the cost and weight of the PCB.
    • Dielectric Layer: The thickness and material of the dielectric layer play a crucial role in both thermal and electrical performance. A thinner dielectric layer improves heat dissipation but may limit electrical isolation. Choosing the right dielectric material is key for balancing performance and reliability.
    • Via Placement: For a 2-layer design, vias must be carefully placed to connect the two copper layers. Vias should be positioned to minimize electrical interference and maintain signal integrity.
    • Component Placement: Heat-sensitive components should be placed away from high-power components. This minimizes thermal stress on sensitive devices and ensures reliable operation over the PCB’s lifespan.

    Aluminum PCBs may come with a higher price tag compared to traditional FR4 boards, but the long-term benefits in heat management, performance, and durability make them an excellent investment for demanding applications. Whether you’re working on power electronics, automotive circuits, or lighting solutions, a 2-layer aluminum PCB can provide the right balance between complexity and thermal efficiency.

    If you’re in need of high-quality, custom aluminum PCBs, Best Technology specializes in delivering tailored solutions for your specific design needs. With 18+ years of experience in PCB manufacturing, we ensure top-notch performance, quality, and reliability for all your projects. Let us help you bring your ideas to life with the right aluminum PCB solution!

    What is the thermal conductivity coefficient of copper?
    Wednesday, October 9th, 2024

    What is the Thermal Conductivity Coefficient?

    The thermal conductivity coefficient is a measure of how well a material conducts heat. It’s represented by the symbol k or λ, and it is measured in units of watts per meter-kelvin (W/m·K). It’s defined as the amount of heat that passes through a material 1 meter thick, with a temperature difference of 1 degree (K or °C) between its two sides, in one second, over an area of 1 square meter.

    In general, the higher the thermal conductivity coefficient, the better the material is at transferring heat, so in some high power or power supply electronics, thermal conductivity value is important to transfer heat out. Materials with a high k value, like metals such as copper, allow heat to flow through them easily, which is why they are used in applications that require efficient heat dissipation. In contrast, materials with low thermal conductivity coefficients, such as insulators, are used to minimize heat transfer and preserve energy.

    The thermal conductivity is only for the heat transfer form with thermal conductivity. When there are other forms of heat transfer, such as radiation, convection, mass transfer and other forms of heat transfer, the composite heat transfer relationship. The composite heat transfer relationship is often referred to as the apparent thermal conductivity, the dominant thermal conductivity, or the effective thermal transmissivity of material. In addition, the thermal conductivity is for homogeneous materials, in the actual situation, there are also porous, multi-layer, multi-structure, anisotropic materials, the thermal conductivity obtained by this material is actually a comprehensive thermal conductivity performance, also known as the average thermal conductivity.

    According to Fourier’s law, the thermal conductivity is defined as

    Where x is the direction of heat flow.

    qx’’ is the heat flux in this direction in W/m2, and another is the temperature gradient in this direction, expressed in K/m.

    For an isotropic material, the thermal conductivity is the same in all directions.

    What Is the k Value of Copper?

    The thermal conductivity of copper is about 401W/m.K. Copper is a transition element, pure copper is a soft metal, when it is cut on the surface, it is red-orange, and its ductility is good, thermal conductivity is relatively high, so it is a more commonly used material in cables and electronic components, can be used as building materials, and it is composed of many kinds of alloys.

    What is the thermal conductivity coefficient of copper?

    Copper’s high k value meaning it can quickly absorb and distribute heat. That is why copper is used extensively in heat sinks, electrical wiring, and cooling systems. Because of this, it’s highly valued in industries that rely on rapid heat dissipation. Whether in electronics or heavy machinery, the high thermal conductivity of copper ensures that heat does not build up, preventing overheating.

    Thermal Conductivity of Common Solid Materials

    Here are the thermal conductivity values of some common materials:

    • Aluminum: 237 W/m·K at 300°C
    • Copper: 401 W/m·K at 100°C
    • Iron: 61 W/m·K at 18°C
    • Steel: 45 W/m·K at 18°C (for carbon steel with 1% carbon)
    • Silver: 412 W/m·K at 100°C
    • Graphite: 151 W/m·K at 0°C

    These values highlight the differences in heat conduction across materials, with metals like copper and silver being among the most efficient conductors of heat, while materials like steel and graphite have comparatively lower conductivity.

    Is Copper a Good Conductor of Heat?

    Yes, copper is an exceptionally good conductor of heat. For example, in electronics, copper is often used to cool down processors by transferring heat away quickly, thus ensuring systems run smoothly without overheating. In plumbing, copper pipes help distribute hot water faster, enhancing energy efficiency. From cookware to cooling systems, copper’s outstanding ability to conduct heat makes it indispensable across many fields.

    Copper vs. Aluminum PCB: Which is Better?

    Both copper and aluminum are excellent conductors of heat in circuit boards manufacturing, but how do they compare? Let’s discuss them from below aspects:

    1. Thermal conductivity

      First, let’s take a look at the thermal conductivity of aluminum and copper, which is a key indicator of the material’s heat dissipation performance. The higher the thermal conductivity, the better the material’s ability to transfer heat.

      • Copper: 401W/m.k
      • Aluminum: 237W/m.k

      It can be seen from the data that the thermal conductivity of copper is almost twice that of aluminum, which means that under the same conditions, copper can transfer heat more efficiently. For this reason, copper is often the material of choice in applications that require extremely high thermal performance.

      2. Density

      • Aluminum: Density of about 2.7 g/cmÂł.
      • Copper: Density of about 8.96 g/cmÂł.

      Copper is nearly three times as dense as aluminum, which makes copper much heavier than aluminum. In some weight-sensitive applications, such as portable electronic devices, heavy cooling components may affect the portability and user experience of the product. Therefore, in these scenarios, although aluminum is not as conductive as copper, it is still a very popular choice due to its lower weight.

      What is the thermal conductivity coefficient of copper?

      3. Cost

      The prices of aluminum materials are low, and processing costs are relatively low. At the same time, aluminum is easy to process into a variety of shapes, which makes aluminum very cost-effective in the manufacturing process. However, the cost of copper is much higher and the manufacturing process is more complex, so the overall cost is much higher than aluminum.

      4. Corrosion resistance

      Aluminum and copper also have significant differences in corrosion resistance. Aluminum has good oxidation resistance, and the aluminum oxide layer formed on the surface can effectively protect the internal material from further corrosion. However, the corrosion resistance of copper is relatively poor, and it is easy to generate patina (carbonate of copper) in humid environments, which not only affects the appearance but also reduces the heat dissipation performance.

      Why Does Copper Have the Highest Thermal and Electrical Conductivity?

      Copper has very good conductivity because it has a large number of freely moving electrons in its interior. When a voltage is added to both ends of a metal, the positive electrode piles up positive charges, and the negative electrode piles up negative charges, because the same charges attract each other and the dissimilar charges repel each other, forcing the electrons to move in a directional way, thus forming a current. In addition, copper has a very low resistivity of only 1.68×10^-8Ω·m, second only to silver, and is the second most widely used conductive material.

      Copper’s good thermal conductivity is also related to its internal free electrons. Metal nuclei have a weak ability to bind electrons, allowing free electrons to move freely within the metal and transfer heat rapidly. When one end of a metal is heated, the electrons of atoms or molecules at that end absorb energy and begin to vibrate. These vibrations are passed on to the electrons of neighboring atoms or molecules, forming a heat flow ‌4. Copper is metal-bonded in a way that makes it easier for its electrons to transfer energy inside the metal, and thus heat faster.

      Here is the end of this blog sharing, if you have other questions about copper material, welcome to e-mail us: sales@bestpcbs.com.