Why do MCPCB board have holes? What is PTH/NPTH?

April 15th, 2021

If you look closely at a MCPCB board, you will see holes of different sizes in the board, each hole was designed for a purpose. These holes can be divided into PTH (Plating Through holes) and NPTH (Non-Plating Through holes). Best Technology’s smallest drill tool is 0.5mm, so generally we require customers to design the minimum hole size of 0.5mm or more.

How to distinguish PTH and NPTH through holes?

In fact, it is very simple. Just look at the hole wall to see if there are bright plating traces (Copper). The holes with copper are PTH, and the holes without copper are NPTH.

PTH & NPTH

What is the NPTH used for?

If you pay a little attention, you will find that the size of NPTH is usually larger than the PTH, because most of NPTH are for positioning purposes, it can be divided into the following four types.

  1. 1) Countersink: It’s a cone-shaped hole that is cut into the PCB to allow the flat head of a socket cap screw to fit flush with the surface of the board.
  2. Counterbore: It’s a cylindrical flat-bottomed hole that is designed to house a hex head or socket head cap screw to be used to secure a PCB board.
Countersink & Counterbore
  • Screw hole: As shown below.
As shown below
  • Slot hole: Some components of the installation and positioning of the foot is rectangular or oval, we called this kind of irregular drilling as slot hole. During PCB machining, there are two types of drilling tools for plugins, one is called a drill cutter, which is used to drill round holes, and the other is called a routing bit, which is used to drill slot hole.
Slot hole

What is the PTH used for?

In order to connect the circuits between two or more layers, we need to design the PTH, which have following three main purposes.

  1. Used for conducting electricity.
  • Used for heat dissipation.
  • Used for plug-in components.

If you have other questions about MCPCB, welcome to contact us

What is Blind Via and Buried Via for Printed Circuit Board?

April 15th, 2021

In the Printed Circuit Board industry, believe that you are familiar with blind via and buried via. What is blind via and buried via for PCB? And do you know is the Blind via or Buried Via have special application in your Printed Circuit Board?

In order to know more, we would like to share more information with you today.

Best Technology is an experienced FR4 PCB manufacturer in China since year 2006, with more than 15 years design and fabricate experience for PCB, Best Technology accumulated more than 1000 customers from all over the world.

Before start, we need to know what kinds of hole for FR4 Circuit Board, Via, Blind Via and Buried Via.

What is a Via?

Vias are the copper-plated holes in the PCB that allows the layers to layer connection. The standard via is called a through-hole via, but there are several disadvantages to using through-hole vias in Surface Mount Technology (SMT). For this reason, we often use a blind via or buried via instead. A blind or buried via can be processed in a wide range of different measures, including plugged copper mask via, a plugged solder mask via, plated via or staggered via.

Via
staggered via

What is Blind Via?

The via connects the external layer to one or more inner layers of the PCB and is responsible for the interconnection between that top layer and the inner layers.

Blind Via

What is Buried Via?

For a buried via, is the inner HOLE, between both sides in the board up and down inside the layer after pressing is cannot see. So, it doesn’t have to take up the outer area.

Buried Via

Blind and buried vias are particularly advantageous in HDI board because they optimize the density of the boards without increasing board size or the number of board layers you require. They are most commonly used in high-density PCB designs like, or in FPGA and custom chip packaging.Here is the photo which Best Technology took from our production line to make HDI Printed Circuit Board for our USA customer.

HDI board under production
HDI process

Best Technology is a very professional manufacturer in printed circuit board and HDI Board. If you are interesting to know more information of us, come to contact us and we are looking forward to discuss with you more for Printed Circuit Board.

Interesting color matching – Silkscreen and Solder mask

March 23rd, 2021

In Best Technology, solder mask and silkscreen are available in a variety of colors. For example, common colors of solder mask are black, white, blue, green, red. Common silkscreen colors are black, white, yellow, red, blue. Generally according to the different needs of customers to use collocation, but sometimes if the color collocation is not appropriate will produce color difference.

The following is a list of common collocations that we recommend based on our experience for your future project design.

Solder maskRecommended Silkscreen
BlackWhite
WhiteBlack/Blue/Green/Red/Yellow
BlueWhite
GreenWhite
RedWhite

For the most part,the color of solder mask doesn’t have any effect on PCB’s

functionality.But if the color of the silk screen does not match properly,which may

Cause chromatic aberration(for example,a yellow silkscreen on a black solder mask,

The silkscreen visual may look green)or make reading the silk screen more difficult

To read(for example, a black silkscreen on a light black solder mask).The solder mask will also affect your ability to visually inspect the PCBs. Below are the solder mask comparison from the highest contrast to the lowest for your reference.

Green

Most customers will choose to use Green solder mask for their project since Green is easy on the eyes and allows for high contrast between traces, planes, and empty space on the PCB. Green solder mask has become an industry standard. High contrast allows technicians to most easily review for manufacturing defects.

green

Red

A Red solder mask will provide a bold and clean looking PCB, however the contrast between traces, planes, and empty space significantly lower than it is with a green solder mask. Magnification may be needed when inspecting fine traces on the board for defects with a Red mask. White silkscreen will be better than black silkscreen on a board with red solder mask.

red

 Blue

Blue solder masks have even lower contrast, and magnification becomes required when inspecting for manufacturing defects. These PCBs look visually pleasing and professional and are a good choice for fully-developed products that will not require trace visibility.

blue

Black

Black masks have almost no contrast between traces, planes and empty space. A Black mask will absorb heat, increasing the danger of overheating for sensitive components. Pay attention that in order to avoid the appearance of color difference as far as possible do not choose the silkscreen like yellow, green, red, or blue. White will be the better choice.

black

White

A white mask will be the hardest to clean, and also has the lowest contrast. If possible, we suggest that you avoid choosing white, especially in the prototyping stage. It’s the best choice to use white solder mask for LED board, following pictures for your reference.

whtite

If you have other questions about solder mask, welcome to contact us. (Email:sales@bestpcbs.com), we will prove you professional suggestions and solutions.

The Advantages of Surface Mount Technology of a printed circuit board

March 19th, 2021

Surface-Mount Technology has been the industry standard for assembling printed circuit board. It has maintained its popular due its wide array of advantages and relatively few drawbacks. For more than 15 years’ experience, Best Technology has been offering surface-mount service for worldwide customers, and SMT service become a great part of our business.

See some photo which we are do assembly for our customer this month.

SMT 1

Top Advantages of Surface-Mount Technology

Smaller size and reduced weight are the two main advantages to SMT. Components can be aligned closer together and end products will be more compact and light weight.

SMT 2

Here are additional benefits of SMT:

1.Component placement auto correctly – there is no alignment between the PCB solder pads and components pads to avoid placement errors.

2.Low cost:

The advantage of small size up to 0201. One set, SMT typically requires lower production costs than through-hole placement. The size of the board is reduced, the number of drilled holes is reduced, and routing of traces is reduced. So bring down the cost of the whole project.

3.Design flexibility – You can combine through-hole technology and SMT manufacturing on the same board for greater functionality.

4. Printed circuit boards created with the SMT process are more compact, providing higher circuit speeds. (This is the main reasons most manufacturers choose for this method.)

5.Higher circuit speeds – Most manufacturers rate this the number-one benefit.

Lower resistance/induction – High-frequency performance reduces unwanted consequences of RF signals.

6. Quick Turn Around

Using Surface-Mount Technology, it can save lots of time, SMT is a much more streamlined manufacturing process compared to through-hole. Time is saved because components are applied using a solder paste instead of drilling holes in the PCB

7. Quantity – More components can be positioned using both sides of the circuit board, creating more connections for each component. Fewer circuit boards are needed for devices.

8. Stability – Better performance delivery is realized with vibration mechanical conditions. SMT connections are more reliable, it can reduce the dis connection risks during the final test.

SMT 3

Best Technology offers expert surface-mount technology services in China, along with manufacturing bare printed circuit board, flexible circuits, and MCPCB fabrication. With more than 15 years rigid PCB board experience, Best Technology has the resources, equipment, and know-how to produce your PCBs quickly and reliably.

different assembled board photo

Call Best Technology now and let us become your partner of PCB assembly service.

High-TG FR4 Printed Circuit Board

December 31st, 2020

If you work in Printed Circuit Board industry, you may know a normal PCB FR4-Tg is 130-140 degrees, the medium Tg is greater than 150-160 degrees, and High-TG FR4 Printed Circuit Board is greater than 170 degrees.
And what is a High-TG FR4 Printed Circuit Board? High-TG PCB is another name for a high-temperature FR4 PCB, it means the printed wiring boards designed to endure for extremely high-temperature. A Printed Circuit Board is defined as high-TG FR4 PCB if its glass transition temperature (TG) is higher than 170 degrees Celsius. High-TG FR4 will have better mechanical and chemical resistance to heat and moisture than standard FR4. The higher the TG value, the better the temperature resistance of the material, so High-TG FR4 is more and more popular particularly working in high power industry.
Best Technology can provide many different High-TG FR4 material for Rigid Circuit board, Typical High-TG FR4 PCB material including: ITEQ-IT-180A, ISOLA 370HR, ShengYi S1000-2 and etc.

Part of the inventory of raw material-1
Part of the inventory of raw material-2
Part of the inventory of raw material-3

From the following PCB picture, you can see the normal TG130 FR4 PCB substrate is not only softening, deformation, melting, as well as other phenomenon working under high temperatures, but also there is a sharp decline in electrical properties, which will effect on product life.

Solder mask blistering-1
、Solder mask blistering-2

If your FR4 Printed Circuit Board or PCBA board appear to above problems, then you should consider to use a High-TG FR4 Rigid Circuit Board. it may be catching your interest willing to understand a little bit more about High-TG FR4 printed circuit boards. Because High Tg Rigid Circuit board have a better stability at high temperatures, the substrate provides better heat resistance, mechanical and chemical stability for the circuit board.

BPM20396)

Properties/ Applications of high Tg PCB
With the rapid development of electronics industry, High-TG FR4 PCB is widely used in Uninterrupted Power Supply, precise instrument as well as industry. High-TG FR4 PCB material probably designed for the high functionality, high multi-layer development high-density circuit; higher heat resistance and high-density surface mounting technology (SMT). So, the demand on High-TG FR4 PCB material become more widely used PCB manufacturing.
What’s more, High TG material is also popular in LED lighting industry, because heat dissipation of LED is higher than normal electronic components, but same structure of FR-4 board is much cheaper than metal core PCB, such as aluminum PCB.
High-TG FR4 PCB materials have the following properties:
 Resistance to high temperatures
 Long delamination durability (aging of materials to consider for safety reasons)
 Low thermal expansion
Excellent PTH reliability
Good mechanical properties
High temperature durability
High value of thermal stress resistance
high temperature durability
long delamination durability
Low Z axis expansion (CTE)

BPM19308

Advantages of High-TG FR4 PCB
Higher stability: it will automatically improve the heat resistance, chemical resistance, moisture resistance, as well as stability of the device if increasing the TG of a printed circuit board substrate.
Bear high power density designs: high TG PCB will be a good solution for heat management if the device has high power density with quite high heat generation rate.
It can achieve with using a larger printed circuit board to change the design and power requirements of a device when reducing the heat generation of ordinary board, what’s more, it also can use the high TG PCB.
Ideal for multilayer & HDI PCBs: there will lead to high levels of heat dissipation because multilayer & HDI PCBs are more compact and have dense circuits. So high TG PCBs are often used for the multilayer & HDI PCBs so that it can make sure reliability in Printed circuit board fabrication.

BPM20005 TOP
BPM20005 BOT

 If your applications are in any danger of subjecting your PCBs to extreme temperatures or the PCB is required to be RoHS Compliant, it will be in your best interest to look into high-TG FR4 PCBs.
Come to contact Best Technology Co., Limited. for High-TG PCB assistance. we can help you determine if you need high-temperature printed circuit boards and direct you to which specific boards are likely to be useful for your design and application. If you are transitioning to RoHS or just need more information about the High TG laminates, just give us a call and we’ll be happy to accommodate you. contact us online right now.

What’s RT/duriod 5880?

December 1st, 2020

For PCB materials, you may have ever heard about many different kinds of materials such as the materials of FR4, Aluminum, Copper base and ceramic base.

But do you know what the duriod 5880 materials is?

Actually duriod 5880 is a kind of materials of the Rogers, it is the materials which is used for high frequency circuit board. RT 5880, which is famous for its low dielectric loss, low moisture absorption, and stable dielectric constant. The PCB made of duriod 5880 can be widely used in airborne and ground-based radar systems, millimeter wave applications, and space satellite transceivers.
Different with other kinds materials, the color of the RT 5880 materials is black.

Why this material can be used in such high end field? Let’s see below to know more information.

Excellent dielectric properties:
RT/duroid 5870/5880, as a new generation of high-frequency laminate, is made of polytetrafluoroethylene composite material (PTFE). At the same time, glass microfibers are randomly distributed in the material, which provides the greatest strength during the production and application of the circuit board.

High-frequency circuit design has strict requirements on the dielectric constant of the printed circuit board. RT/duroid 5880 has an ultra-low dielectric constant and remains the same in a very wide operating frequency range.

At 10GHz operating frequency, the measured dielectric constant is only 2.33/2.2, which is significantly lower than similar materials on the market. Therefore, from the perspective of performance parameters and production costs, the board is more suitable for high-frequency application design than similar products.

At the same time, under the same standard (f=10GHz), and the dielectric loss of the RT5880 is only 0.0012/0.0009. The extremely low dielectric loss makes it very suitable for high-frequency and the field of wide-band applications which requiring minimal dispersion and low loss.

In addition, the extremely low moisture absorption rate makes it an ideal choice for applications in high humidity environments. The moisture absorption rate of RT/duroid 5880 is only 0.02%, so it can meet the strict requirements of mechanical reliability and electrical stability in the complex microwave structure design, and it is also suitable for applications in high humidity environments.

With the continuous improvement of the operating frequency of high-frequency circuits, the requirements for the dielectric constant and dielectric loss of the circuit board are becoming more and more stringent. The excellent performance of RT/duroid 5880 in these two aspects can significantly improve the design of high-frequency circuits. Definity, improve circuit performance.

Easy to process and install
In this high-frequency design, in order to meet the requirements of electromagnetic shielding and compact design, printed circuit boards are often installed in various irregularly shaped cavity structures. Therefore, the PCB board must be designed in different shapes and suitable for production and Installation.

For RT/duroid 5880 laminate, which is easy to cut, trim and good for PCB manufacturing.

At the same time, it can resist all the solutions and chemical agents used in the process of etching and plating through holes, and it has a good performance of the cold and heat resistance.

The composite material RT/duroid 5880 can be covered with a laminated copper foil for some key electrical applications, and brass plates or copper can also be used as required.
Usually laminates of the RT/Duriod 5880, it can make double-sided copper clad with thicknesses ranging from 1/2 oz. to 2 oz./ft2 (8.5~70 μm) to meet most custome’s requirements for the thickness of copper foil.

Our company has focus on the PCB fabricationi for more than 15 years, we can make PCB with Rogers PCB with RT/Duriod 5880, as well as RO4003C and RO4350B with different thickness.
If you are interesting to know more and your PCB also want to made of RT/Duriod 5880, please feel freely to contact us for more information related.

The main factor affect the heat dissipation of Metal Core PCB

December 1st, 2020

various LED applications due to its good heat dissipation, do you know what factors can affect the heat dissipation?
As we all known, MCPCB(Aluminum/Copper/Stainless steel) is widely used in
One of the reasons is that Metal base board use special substrate material which is specifically formulated to improve the reliability of designs that run at higher than normal temperatures. Instead of serving strictly as a mounting surface for the various components, the substrate actively draws heat from the locations of hot-running components through to the opposite layer of the board where it can dissipate efficiently and safely, it’s the Dielectric Layer, which is the main factor affect the heat dissipation.

Some people may also mistakenly believe that the dielectric layer is thicker, the heat dissipation will be better. Actually the thickness of Dielectric Layer depends on the customer’s design requirements, it will not effect on heat dissipation. What affects heat dissipation is the material of the dielectric layer, also known as thermal conductivity.

Compare to Metal base board, FR4 PCB has low thermal conductivity, typically around 0.3W, while MCPCB has higher thermal conductivity, which include 1.0W, 2.0W, 3.0W, 7.0W, 8.0W.

In order to save the cost, not all boards need to use 3W dielectric layer. 1W is enough for 2835 or 3030 LED. High power LED like Cree need to use 3W.

If you have other questions about MCPCB, welcome to contact Tammy (Email:sales@bestpcbs.com), she will prove you professional suggestions and solutions.

Do the vias can be filled for ceramic PCB?

November 13th, 2020

As everyone knows for FR4 PCB, people like the vias to be tented or filled for some special applications.
Ceramic PCB is more and more popular because of the thermal conductivity is very high and very good for heat dissipation. Most of customers are going to make the PCB with ceramic material, includes Al2O3, AlN, BeO or Si3N4, etc.
So do the vias can be filled for ceramic PCB becomes the frequently asked questions (FAQ).
The answer is YES.
So what’s the material can be filled in vias for DBC/DPC alumina PCB/ Aluminium Nitride PCB?

The material can be solder mask, Dow Corning 1-4173 and copper/Cu.
Normally, customers want the vias/holes to be filled with copper.
Because copper can fill the vias very well and it is easier to do and it looks very good. Please see below photo.
The left one with filling with copper, the right one without filling copper

Why you need to fill the vias with copper?
1.Becuase if let the vias open, they will allow solder to flow through to opposite side of PCB during reflow, this causes bridging under components.
Filling the open vias/holes with copper can prevent from the solder pates into the vias.
2.If you need to pull vacuum around them and a hole would compromise that, so need to fill the vias.
There are also other purposes for filling the vias, if you need such ceramic board with filling the vias, please contact Coco in Best Technology sales@bestpcbs.com

What are the commonly used aluminum base materials? What’s the difference?

November 11th, 2020

Best Technology has more than 14 year experience for producing Metal core PCB, we have our own raw materials factory for MCPCB and we fabricate MCPCB in Shenzhen, so that customer various special requirements can be meet here.

Compared to copper and stainless steel, aluminum is the most economic option considering thermal conductivity, rigidness, and cost. And many of these aluminum alloys base have been divided into classes, the commonly used on MCPCB are AL1060, AL3003, AL5052 and AL6061.

Do you know the differences between these substrates? This blog will give a brief introduction for you.

1060 alloys
AL1060 are commercially pure, unalloyed aluminum, it’s soft, ductile, workability and exceptional corrosion resistance, making it suitable for hard-forming applications. It can be welded with any method, but it cannot be heat-treated. Its cost is the lowest of the four types.

3003 alloys
AL3003 use silicon, copper, and magnesium as the main alloying elements, oftentimes with supplemental nickel and beryllium. They are heat treatable, have high strength, good resistance to cracking and wear, and have good machinability.

Mechanical PropertiesMetricEnglish
Ultimate Tensile Strength200 MPa29000 psi
Tensile Yield Strength186MPac
Shear Strength 110 MPa16000 psi
Modulus of Elasticity68.9GPa10000 ksi
Shear Modulus25 GPa3630 ksi

5052 alloys
AL5052 use magnesium as their primary alloying element and are not heat-treatable, but it’s the highest strength alloy of the more non-heat-treatable grades. Its resistance to fatigue is better than most grades of aluminum and have a great surface aesthetic when anodized.
In our company, if not special request or notes, the default material we use is AL5052 after considering all the performance and cost.

Mechanical PropertiesMetricEnglish
Ultimate Tensile Strength228 MPa33000 psipsi
Tensile Yield Strength193 MPa28000psi
Shear Strength138 MPa20000 psi
Modulus of Elasticity70.3GPa10200 ksi
GPaShear Modulus 25.9 GPa25.9 760 ksi


6061 alloys

Mechanical PropertiesMetricEnglish
Ultimate Tensile Strength310 MPa45000 psi
Tensile Yield Strength276 MPa40000 psi
Fatigue Strength207MPa30000 psi
Shear Strength96.5MPa14000 ksi
Modulus of Elasticity68.9 GPa10000 ksi
Shear Modulus26 GPa770 ksi

AL6061 implement magnesium with silicon as their principal alloying elements. Their strength is improved with heat treatment. AL6061 is one of the most widely used aluminum alloys, it has high strength and superior corrosion resistance. Its weld-ability and formability make it suitable for many general-purpose applications.

Cost Comparison: AL1060 < AL3003 < AL5052 < AL6061

If you have other questions about MCPCB, welcome to contact Tammy (Email:sales@bestpcbs.com), she will prove you professional suggestions and solutions.

ENIG surface finish of FR4 Printed wiring board

November 4th, 2020

Continued to my last blog, do you know why we want to talk more for Gold surface finish of rigid Boards? I would like to take this chance to share more information for the capability from Best Technology.

Electroless nickel immersion gold (ENIG) is a type of surface plating used for printed circuit boards. It consists of an electroless nickel plating covered with a thin layer of immersion gold, which it can protects the nickel from oxidation. It is also used for welding and applied to contacts (such as keys, gold fingers on memory strips, etc
See attached complexity design for ENIG FR4 printed circuit board.

ENIG has several advantages over more conventional (and cheaper) surface plating such as HASL (solder), including excellent surface planarity (particularly helpful for PCBs with large BGA packages), good oxidation resistance, and usability for untreated contact surfaces such as membrane switches and other contact points. See the complex circuit boards design photo.

ENIG also does not wet as evenly or easily as HASL. In addition, ENIG is a costlier finish, but offers the best characteristics for printed circuit boards. The process requires the most steps compared to other common finishing types.
The thickness of Gold Best Technology conforms to IPC Standard IPC-6013.
Let us see the different for gold finish.

Gold-ENIG
The most important factor the gold serves as barrier and protectant to the nickel.
Advantages of ENIG

Immersion finish = excellent flatness
Good for fine pitch / BGA / smaller components from Samtec/Hirose/Molex
Wire bondable
Good heat dissipation
Long shelf Life (12 months in vacuum pack)

Disadvantages of ENIG
Expensive finish
Black Pad/Black Nickel concerns on BGA
Damage from ET (electronics test)
Signal Loss (RF)
Complicated Process

Gold-Hard Gold

Advantages of ENIG
Hard, Durable Surface
No Pb
Long shelf life

Disadvantages of ENIG
Very Expensive
Extra Processing/ Labor Intensive
Use of more solder Resist/Tape
Plating/ Bus Bars
Demarcation(delamination)
Difficulty with other surface finishes.

As an rich experience PCB manufacturer since 2006, Best Technology always improve its Rigid Circuit boards capability to meet customer requirements, If you have any question about the printed circuit boards (PCBs). Warmly welcome to send mail or call Best Tech.