PCB manufacturing PCB manufacturing
Home > Blog

Metal Core PCB Material: Types, Properties & Applications

July 25th, 2025

When it comes to managing heat in high-power electronic devices, Metal Core PCBs (MCPCBs) are the go-to solution. These boards use a metal base—typically aluminum or copper—to efficiently dissipate heat for LEDs, power modules, and automotive systems. However, the effectiveness of an MCPCB depends heavily on the material chosen for its core and dielectric layers.

At Best Technology, we specialize in custom MCPCB fabrication using materials from leading global brands like Laird, Bergquist, and Ventec. Whether you need aluminum-based MCPCBs for LED lighting or copper-core boards for power electronics, we offer full support from material selection to prototyping and mass production. In this blog, we will share some information about metal core PCB materials, help you to understand MCPCB from the inside to out.

Metal Core PCB Material: Types, Properties & Applications

What Is Metal Core PCB?

A metal core PCB (MCPCB) is a printed circuit board that uses a metal base instead of traditional fiberglass (FR4). This metal base acts as a heat spreader, drawing heat away from components that generate significant thermal energy during operation.

In a typical MCPCB, the structure includes three key layers:

  • Copper Circuit Layer – for electrical connections.
  • Dielectric Layer – an insulating layer that separates the copper from the metal core, allowing heat transfer but preventing electrical conduction.
  • Metal Core (Base Layer) – typically aluminum, copper, or stainless steel, used to conduct heat away from the board.
Metal Core PCB structure

These PCBs are engineered to handle thermal management more efficiently than standard PCBs. As electronic devices become more compact and powerful, effective heat dissipation becomes more important, and MCPCBs offer a practical solution.

Common Metal Core PCB Materials

There are several options when it comes to metal core PCB material, each with its own unique benefits. The choice depends on factors like thermal requirements, mechanical strength, weight, and budget.

1. Aluminum Core

Aluminum is the most commonly used metal core material in MCPCBs. It is lightweight, cost-effective, and has good thermal conductivity—typically around 205 W/m·K. Aluminum cores are ideal for LED lighting, consumer electronics, and automotive circuits where heat must be dissipated efficiently, but extreme thermal loads are not present. The commonly used aluminum core PCB in Best Technology is 5052, 6061, 3003, here is the datasheet of them:

Property6061 Aluminum5052 Aluminum3003 Aluminum
Material TypeAl-Mg-SiAl-MgAl-Mn
Tensile Strength (MPa)290 – 350190 – 260130 – 200
Yield Strength (MPa)240160 – 200115 – 150
Elongation at Break (%)10 – 1712 – 2015 – 20
Thermal Conductivity (W/m·K)167138159
Density (g/cmÂł)2.702.682.73
Melting Point (°C)582 – 652607 – 650643 – 657

2. Copper Core

Copper is used where superior heat dissipation is needed. It has excellent thermal conductivity—around 385 W/m·K—and is suitable for high-power applications such as power supplies, industrial equipment, and RF systems. While it offers the best performance in terms of heat transfer, it is also heavier and more expensive than aluminum.

3. Stainless Steel Core

Stainless steel is rarely used, but it can be found in certain niche applications where corrosion resistance and mechanical strength are more important than thermal performance. Its thermal conductivity is much lower, around 16 W/m·K, making it suitable only for specific use cases.

Metal Core PCB Material Manufacturers

When choosing a metal core PCB manufacturer, it’s important to work with companies that supply high-quality materials and have a track record of consistency and reliability. Below are some of the leading manufacturers of metal core PCB materials that we cooperating:

  • Bergquist (Henkel)
  • Ventec
  • Polytronics (Taiwan)
  • Boyu (China)
  • Laird Technologies
  • Totking (China)
  • Dupont Clamcool
  • XianYang Bode electronic

Why Thermal Conductivity Is Important in MCPCB?

The thermal conductivity of a material refers to the amount of heat it can transfer under stable conditions. Specifically, for a 1-meter-thick material, if the temperature difference between two surfaces is 1°C, and heat transfer occurs through 1 square meter within 1 hour, the quantity of heat transferred is expressed in W/m·K (watts per meter-kelvin). For practical use, K (kelvin) can often be replaced by °C.

The thermal conductivity value depends on the material’s composition, density, moisture content, and temperature. Materials with lower density or non-crystalline structures tend to have lower thermal conductivity, while materials with higher density and metallic bonding structures transfer heat more efficiently.

Generally, materials with low thermal conductivity are referred to as thermal insulators, and those with a conductivity below 0.05 W/m·K are called high-efficiency insulation materials. In contrast, metals typically exhibit high thermal conductivity, which makes them ideal for use in metal core PCBs.

Thermal Conductivity of Common Metals Materials

MetalThermal Conductivity (W/m·K)
Silver429
Copper401
Gold317
Aluminum237
Iron80
Lead67
Zinc34.8

As seen in the table above, silver has the highest thermal conductivity, followed by copper and gold. However, due to cost and practicality, copper and aluminum are the most commonly used metals in MCPCBs. Aluminum strikes a balance between cost, weight, and thermal performance, while copper is chosen for extreme thermal demands.

1W vs 2W vs 3W Thermal Conductivity Differences

When evaluating MCPCB materials, it’s essential to consider not only the core metal but also the thermal conductivity of the dielectric layer. This layer sits between the copper circuitry and the metal base. In the metal core pcb manufacturing, the commonly used dielectric layers are 1W, 2W and 3W.

  • 1W/m·K: Basic dielectric material, suitable for low-power circuits and LEDs with minimal heat output.
  • 2W/m·K: Offers moderate thermal performance, ideal for mid-power LEDs and general electronics.
  • 3W/m·K or higher: Designed for high-power LEDs or circuits that generate significant heat, ensuring efficient transfer to the metal core.

Choosing a higher thermal conductivity dielectric can greatly reduce thermal resistance, leading to better overall cooling performance. But not the higher the better, it should depends on your specific demands.

Aluminum PCB vs Copper Core PCB

When comparing aluminum PCBs and copper core PCBs, the main differences come down to thermal performance, cost, and application needs. Both are types of metal core PCBs (MCPCBs), but they serve different purposes depending on how much heat your circuit generates and how much budget you have.

Aluminum PCB is the most commonly used metal core because it offers a good balance of performance, weight, and affordability. It provides moderate thermal conductivity (around 237 W/m·K) and is suitable for many applications, especially LED lighting, consumer electronics, and automotive circuits where heat is present but manageable. Aluminum is also lightweight, making it easier to handle and mount, especially in devices where weight matters.

Copper core PCB, on the other hand, offers superior thermal conductivity (around 401 W/m·K if used directly thermal path technology), nearly double that of aluminum. This allows it to handle more heat, which is crucial in high-power electronics, RF systems, and industrial power converters. However, copper is heavier and more expensive, so it’s typically used only when the highest level of heat dissipation is required.

Can I Use Aluminum PCB in High Power LED Lighting?

Yes, aluminum PCBs are widely used in high-power LED lighting, especially when paired with high thermal conductivity dielectric materials. These boards effectively dissipate heat away from LEDs, preventing overheating and maintaining light output stability.

However, the design must ensure:

  • Adequate heat spreading area
  • Proper thickness of aluminum core (typically 1.0mm to 1.6mm)
  • High-quality dielectric layer with 2W or 3W thermal conductivity

In cases where LEDs generate extreme heat, consider using copper MCPCBs or combining the aluminum core with external heat sinks for better performance.

How to Choose the Right MCPCB Material for LED Projects?

Selecting the correct metal core PCB material for your LED project involves analyzing the following:

  • Thermal Output of LEDs

Higher wattage LEDs generate more heat. For low-power LEDs, aluminum with 1W/m·K dielectric is sufficient. For high-power LEDs, choose aluminum or copper with 2W–3W dielectric.

  • Mechanical Requirements

If the PCB must endure vibration or mechanical stress (e.g., automotive lighting), choose thicker copper for added durability.

  • Budget Considerations

Aluminum offers a cost-effective balance between performance and price. Copper is more expensive and should be reserved for projects where thermal performance cannot be compromised.

  • Weight Constraints

In portable or ceiling-mounted LED systems, lightweight aluminum helps reduce the overall weight of the fixture.

Metal Core PCB Applications

  • LED Lighting: Used in street lights, automotive lights, grow lights, and flood lights to ensure LEDs stay cool.
  • Power Electronics: Found in motor controllers, inverters, and converters to handle large currents and heat.
  • Automotive: Used in ECUs, headlights, and battery systems for reliable performance in harsh environments.
  • Telecommunications: Applied in RF modules, power amplifiers, and antenna systems.
  • Consumer Devices: Used in high-performance audio systems and power adapters.

Best Technology – Your Online Partner in MCPCB Manufacturing

At Best Technology, we specialize in the design and production of metal core PCBs for various industries. Whether you need aluminum or copper-based boards, we deliver customized thermal solutions to meet your specific project needs. By choosing Best Technology, you can enjoy:

  • 99% on-time delivery
  • Highest quality that conforms to IATF16949
  • Factory prices with no MOQ
  • High mixed varieties: aluminum pcb, copper PCB, directly thermal path PCB, ims pcb
  • Multiply surface finish: OSP, HASL, ENIG, ENEPIG
  • Turnkey PCB & PCBA assembly
  • Flexible Production: From prototypes to high-volume manufacturing
  • Free DFM & DFA checks
  • 24/7 online sales

FAQs

Q1: What thickness is standard for aluminum MCPCBs?

Typical thicknesses range from 1.0mm to 1.6mm, depending on mechanical strength and thermal needs.

Q2: Is copper MCPCB worth the extra cost?

Yes, in high-power applications where superior thermal performance is necessary, copper is a valuable investment.

Q3: Can I request a custom thermal analysis?

Absolutely. Best Technology provides thermal analysis and simulation support to ensure the right material choice.

Q4: Are there standard sizes for MCPCB panels?

Yes, but we also offer custom sizes based on your design files and project needs.

Q5: How can I get a quote for metal core PCBs?

Send your Gerber files, project details, and thermal requirements to Best Technology. Our team will respond within 12 hours.

Electronic Component Failure Analysis: Why it occurs?

July 18th, 2025

What Is Electronic Component Failure?

When any part inside an electronic system stops working as expected, it’s called an electronic component failure. This could mean a capacitor no longer holds charge, a resistor burns out, or an integrated circuit malfunctions. Even one small faulty component can lead to major issues in the final product.

To find out why a component failed, engineers use a process called electronic component failure analysis. This process involves inspecting the part visually and electrically, identifying how and why the fault happened, and using that information to avoid similar problems in the future. It’s essential for quality assurance, product reliability, and cost control in any electronics-related business.

Electronic Component Failure Analysis

Types of Electronic Component Failure

Electronic components can fail in different ways depending on the stress they endure. Below are the four most common types:

1. Mechanical Failure

Mechanical failure happens when there is a physical breakdown of the component’s structure. Some failures are often caused by vibration, improper handling, or dropping a device. In mobile or automotive electronics, this type of failure is especially common due to frequent movement. Common typical failures are including:

  • Cracked solder joints
  • Broken leads or pins
  • Fractured PCB substrates
  • Loose connectors due to vibration

You might notice components that are no longer connected properly to the board or parts that move when touched. Visual inspection often reveals cracks or loosened parts caused by physical force.

2. Thermal Failure

All electronic parts generate some heat when they operate. However, if the heat is not controlled properly, components can overheat and become damaged. This is known as thermal failure.

For example, semiconductors like transistors and integrated circuits are sensitive to high temperatures. When they get too hot, their internal structure may break down, leading to permanent damage.

3. Aging Failure

Components have a natural lifespan. Over time, materials degrade, and the component can no longer perform its function correctly. This is called aging failure.

Electrolytic capacitors are well-known for this issue—they tend to dry out after years of use, causing them to lose their ability to hold charge. Similarly, solder joints can crack after repeated heating and cooling cycles (called thermal cycling), leading to poor connections.  In addition to this, typical aging failures also including:

  • Metal fatigue in solder joints
  • Battery capacity reduction
  • Deteriorated dielectric layers

4. Packaging Failure

Electronic components are enclosed in packaging to protect the inner materials. If the packaging is flawed or gets damaged during use, it may expose the component to moisture, dust, or chemicals.

For instance, water vapor may seep through a cracked chip case and cause corrosion inside. This is especially risky in humid or corrosive environments. Packaging failure is often seen as cracking, blistering, or delamination of the part’s outer shell.

Types of Electronic Component Failure

Causes of Electronic Component Failure

To solve problems effectively, it’s important to understand the root causes behind failures. Below are the most common causes engineers encounter during electronic component failure analysis:

1. Overvoltage and Overcurrent

Every electronic component has a maximum voltage and current rating. Exceeding these limits can damage the internal structure, often leading to immediate failure. For example, sending too much current through a resistor can cause it to overheat and burn. Applying excessive voltage to a capacitor can cause it to explode or leak.

2. Poor Soldering or Manufacturing Defects

Faulty assembly techniques can lead to short circuits, intermittent connections, or component movement. Cold solder joints—where the solder didn’t melt completely—can crack over time.

If a component is misaligned or not soldered properly to all its pads, it may not function or may fail under mechanical stress. These defects are usually caught through visual inspection or X-ray analysis.

3. Electrostatic Discharge (ESD)

Static electricity may not hurt humans, but it can destroy sensitive components like MOSFETs and ICs instantly. Even a small ESD event can damage internal junctions, creating invisible faults that show up later during use.

4. Environmental Stress

Moisture, dust, salt, or chemicals in the air can corrode metal parts, especially in outdoor or industrial environments. Extreme temperatures or frequent thermal cycling can stress materials, causing them to crack or delaminate.

5. Inadequate Design or Component Selection

Using the wrong part for the job—such as a low-voltage capacitor in a high-voltage section—can lead to early failure. Similarly, ignoring derating rules (operating parts near their limit) can reduce lifespan dramatically.

How to Check Faulty Electronic Components?

When a device isn’t working, checking the components one by one is a logical step. Here’s how to do that effectively:

1. Visual Inspection

The first step is always to look carefully. Use a magnifying glass or microscope if needed. There are some signs can be checked directly if components get failure. Look for:

  • Burn marks or discoloration
  • Cracks or broken legs
  • Bulging or leaking capacitors
  • Lifted or cracked solder joints
  • Warping or melting

2. Smell

Burnt electronic parts release a strong smell. If a section of the board smells like burnt plastic or metal, you’re probably close to the damaged part.

3. Touch Test (with Caution)

Once the power is OFF and the board is safe to handle, you can gently feel components. If one feels much hotter than the rest, it may be failing. Never touch live circuits, and use caution even when power is removed—capacitors may still hold a charge.

4. Comparison Method

If you have an identical working device, compare it with the faulty one. Swapping parts one by one can help isolate which component isn’t working.

5. Multimeter Testing

A digital multimeter is your best tool. You can test for open circuits, shorts, or measure resistance, voltage, and continuity. We’ll explain this in the next section in detail.

How to Prevent Electronic Component Failures?

While you can’t prevent all failures, many of them can be avoided with good design, handling, and maintenance practices.

  • Always source your components from reputable suppliers. Cheap or counterfeit parts are far more likely to fail.
  • Avoid pushing components near their max voltage, current, or temperature limits.
  • Add surge protection (like TVS diodes or fuses) where needed.
  • Use appropriate PCB layout techniques for signal integrity and thermal control.
  • Use anti-static wrist straps and mats when handling sensitive parts.
  • Store components in anti-static bags or boxes.
  • Avoid touching component pins directly.
  • Good soldering practices and correct part orientation go a long way. Automated optical inspection (AOI) and in-circuit testing (ICT) help ensure quality during production.
  • For circuits exposed to moisture or dust, apply conformal coating or potting material to prevent corrosion and shorts. Use enclosures with proper IP ratings if the device will be outdoors.
  • Use heatsinks, thermal vias, fans, or thermal pads to keep parts cool. High temperatures shorten component life more than almost any other factor.

How to Test Electronic Components with a Multimeter?

A multimeter is one of the most useful tools for checking components, it can be tested various parts, here is how to test:

How to Test Electronic Components with a Multimeter?

1. Testing Capacitors

  • Discharge the capacitor before testing.
  • Set the multimeter to capacitance mode (if available).
  • Connect probes to the leads.

A large difference between the reading and rated value suggests aging or failure.

Note: If your multimeter lacks capacitance mode, you can test for short or open conditions using resistance mode.

2. Testing Diodes and LEDs

  • Set the meter to diode test mode.
  • Connect the red probe to the anode and the black to the cathode.
  • A good diode should show a forward voltage drop (~0.6–0.7V).
  • Reversing the probes should show no reading.

LEDs can also be tested this way, and a faint light may even flash when tested in forward bias.

3. Testing Transistors

Bipolar junction transistors (BJTs) can be tested by checking base-emitter and base-collector junctions like diodes.

  • Use diode mode.
  • Test base-to-emitter and base-to-collector—each should show ~0.6V in forward bias.
  • Reversed probes or collector-to-emitter should show no conduction.
  • If you get readings in all directions, the transistor may be shorted.

4. Testing ICs

Integrated circuits are difficult to test with just a multimeter. You usually need to power the board and check input/output signals or use dedicated IC testers.

FAQs

1. What is the first sign of electronic component failure?

Burn marks, strange smells, or malfunctioning behavior are common early signs of component issues.

2. How do you test an electronic component without removing it from the circuit?

You can test many components in-circuit using a multimeter, but readings may be affected by parallel components.

3. How often should electronics be inspected for aging components?

Critical systems should be checked annually, while consumer devices may only need service after several years.

4. What is the role of derating in preventing failures?

Derating means operating components below their maximum limits to reduce stress and increase reliability.

5. Can failure analysis improve future product design?

Yes, analyzing failed parts helps engineers refine design, choose better materials, and improve overall durability.

If you’re working on a repair or want to improve your product’s reliability, proper electronic component failure analysis is a valuable step. Want help with failure diagnostics or reliable PCB assembly? Reach out to Best Technology — your trusted partner for high-quality, certified PCB and PCBA solutions.

We follow strict quality control with quality control systems, and offer full traceability for manufacturing, report, datasheet… If you want to do PCB assembly or components sourcing, welcome to reach us at sales@bestpcbs.com.

What is EMS in Electronics?

July 16th, 2025

EMS refers to a range of services offered by specialized companies that design, assemble, test, and distribute electronic components or assemblies. These services are crucial to the electronics supply chain, especially as companies seek faster production, cost-effective solutions, and greater focus on innovation rather than internal manufacturing processes. In this article, we will explain the EMS meaning in electronics, how it differs from OEM, and why it’s becoming the preferred solution for many industries.

What Does EMS Stand for in Electronics?

In electronics, EMS stands for Electronic Manufacturing Services. It describes companies that offer a full range of manufacturing services for electronic products on behalf of original equipment manufacturers (OEMs). EMS companies handle everything from printed circuit board assembly (PCBA) to box builds, testing, and even logistics.

The EMS meaning in electronics has evolved over the years. Initially focused only on assembly, EMS now covers the entire product lifecycle, including design assistance, prototyping, materials sourcing, final product integration, and post-sales services. EMS helps companies reduce production costs, improve lead times, and maintain high-quality standards without building their own manufacturing facilities.

What Does EMS Stand for in Electronics?

What Is the Difference Between OEM and EMS?

Many people confuse OEM (Original Equipment Manufacturer) with EMS, but they serve very different purposes.

  • An OEM is responsible for the product concept and design. OEMs usually create the brand, own the intellectual property (IP), and manage marketing and distribution. However, they often outsource the actual manufacturing to EMS providers.
  • An EMS company specializes in manufacturing electronics based on the OEM’s design. They may offer additional services such as design optimization and testing, but they don’t usually own the product IP.

For example:

A tech startup designs a wearable fitness tracker. They are the OEM. Instead of setting up a factory, they work with an EMS provider to manufacture the product, conduct functional testing, assemble the final unit, and ship it globally.

What Do EMS Providers Do?

EMS providers offer a full suite of services that span from initial design consultation to final product shipment. These services typically include:

  • PCB assembly (SMT & THT)
  • Sourcing of electronic components
  • Design for manufacturing
  • Engineering Support
  • Prototype service
  • Testing and inspection (ICT, FCT, AOI, X-RAY, etc.)
  • Mechanical assembly
  • Box build and system integration
  • Packaging and logistics (depends on the payment terms)

EMS companies play a central role in bridging the gap between product design and final delivery. Businesses that don’t own manufacturing plants—or wish to scale quickly—can rely on EMS companies to handle production, logistics, and even after-sales support.

What Do EMS Providers Do?

Common Industries That Rely on EMS Solutions

Many industries especially for electronic industry depend on EMS companies due to the complex nature of electronic product development and production. Some common industries include:

1. Consumer Electronics

Smartphones, tablets, wearables, and gaming consoles are often produced in partnership with EMS companies, who manage high-speed assembly and short product lifecycles.

2. Medical Devices

From diagnostic equipment to portable health monitors, EMS companies provide precision assembly and documentation that comply with strict medical regulations (e.g., ISO13485).

3. Automotive Electronics

Modern vehicles are full of electronic control units (ECUs), infotainment systems, sensors, and cameras. EMS partners help automakers achieve reliability and consistency.

4. Telecommunications

Routers, base stations, and networking equipment require robust PCBA and quick scalability—ideal for EMS manufacturing models.

5. Industrial Automation

Controllers, PLCs, and robotics equipment are often built by EMS providers, ensuring durability and performance in tough environments.

Benefits of Working with EMS Companies

Working with EMS companies brings many advantages, especially for businesses looking to optimize operations and reduce overhead.

1. Cost Reduction

EMS providers work at scale, reducing material costs, labor expenses, and production waste. Their optimized processes bring significant cost savings compared to in-house manufacturing.

2. Faster Time to Market

EMS companies are built for speed. They streamline procurement, assembly, and testing, helping OEMs launch products more quickly.

3. Production Flexible

Whether you’re building 100 units or 100,000, EMS providers can ramp up production based on your needs.

4. Access to Skilled Labor and Advanced Equipment

With a dedicated team of engineers, technicians, and quality experts, EMS partners ensure high-quality output using modern equipment.

5. Reduced Supply Chain Complexity

EMS providers handle sourcing, logistics, and inventory management, reducing the burden on the OEM and improving reliability.

6. Global Reach

Some EMS companies offer local manufacturing as well as global distribution, making it easier to reach customers worldwide.

Electronic Manufacturing Services (EMS) Companies in China

China is home to some of the world’s most established electronic manufacturing services providers. These companies support global clients by offering:

  • Competitive pricing
  • Fast turnaround
  • Mature supply chains
  • Skilled engineering teams
  • High-volume production capabilities

Whether it’s smartphones, industrial controllers, or IoT devices, many companies prefer to work with electronic manufacturing services (EMS) companies in China for their ability to handle rapid prototyping, complex assembly, and scalable production.

Chinese EMS companies often provide end-to-end solutions—from prototyping to full product assembly—and are favored by startups and global brands alike. Some common PCB EMS provider like:

  • PCBWay
  • JLCPCB
  • Best Technology
  • ALLPCB
  • Hitech Circuits Co., Ltd.
  • NextPCB
  • Rayming PCB
Electronic Manufacturing Services (EMS) Companies in China

Why Best Technology Is a Trusted EMS Partner?

Best Technology is a professional EMS provider based in China, offering complete manufacturing services to clients worldwide. We are committed to delivering reliable, high-quality electronics tailored to customer requirements.

  • We are certified to ISO9001, ISO13485, IATF16949, AS9100D, UL, RoHS, ensuring that every product meets global quality standards.
  • From PCB fabrication to final assembly and logistics, we provide turnkey EMS solutions that shorten lead times and reduce complexity.
  • Our experienced team helps optimize your designs for better performance and lower production costs.
  • With strong supply chain relationships and efficient production methods, we offer fair pricing without compromising quality.
  • We serve clients in North America, Europe, and Asia, with strong communication and technical support.

Whether you need rapid prototypes or high-volume manufacturing, Best Technology is ready to be your trusted EMS partner.

FAQs

1. What is EMS meaning in electronics?

EMS stands for Electronic Manufacturing Services. It refers to companies that manufacture, assemble, and test electronic components or systems for other businesses.

2. How is EMS different from OEM?

OEMs design and brand products, while EMS companies focus on manufacturing and assembly based on OEM specifications.

3. Why do businesses prefer EMS providers?

EMS partners help reduce cost, speed up product launches, and allow companies to focus on design and sales instead of manufacturing.

4. Are EMS companies only for large corporations?

No. Many small and medium-sized businesses rely on EMS companies for prototyping, small-batch runs, and full production.

5. What makes Best Technology a reliable EMS company?

Best Technology offers certified quality, full traceability, engineering support, and turnkey EMS solutions backed by years of experience in the industry.

Rogers PCBs – The Ideal Choice for High-Speed Communication

July 12th, 2025

In Best Technology, the printed circuit Board manufacturing, particularly in high-frequency and high-speed signal transmission applications, Rogers Corporation’s PCB materials have become the go-to choice for our engineers. Rogers specializes in producing high-performance, highly reliable circuit board materials that find extensive use in wireless communications, automotive radar, satellite communication, and more. This blog post explores the unique advantages of Rogers PCBs and their significance in the international market.

Rogers PCBs – The Ideal Choice for High-Speed Communication

What is Rogers PCB?

Rogers PCBs are renowned for their exceptional electrical performance. Compared to traditional FR-4 materials, Rogers materials offer a lower dissipation factor (Df), meaning they can maintain signal integrity at higher frequencies with reduced energy loss. This is critical for applications requiring precise data transmission such as 5G communications and millimeter-wave radars.

Rogers materials exhibit outstanding thermal stability. In high-temperature environments, these materials retain dimensional stability and mechanical strength, ensuring the reliability of PCBs under extreme conditions. For devices that need to operate stably over long periods, such as base stations or satellite communication equipment, this feature is especially important. Here is a comparison between Rogers materials and FR4.

PropertyRogers MaterialFR4 Material
Dielectric Constant (Dk)Low and stable (e.g. 2.2 – 3.5)Higher and less stable (around 4.3 – 4.8)
Loss Tangent (Df)Very low (as low as 0.0009)Higher (typically ~0.02)
Signal LossMinimal, ideal for high-frequency applicationsMore signal loss at high frequencies
Frequency PerformanceExcellent at RF/microwave frequencies (GHz range)Poor performance above 1 GHz
Thermal StabilityExcellent (low Dk variation with temperature)Moderate
Thermal ConductivityHigher (improves heat dissipation)Lower
CostHighLow
Material CompositionCeramic-filled or hydrocarbon-based laminatesWoven glass epoxy resin
ApplicationRF, microwave, satellite, aerospace, radar, 5GConsumer electronics, computers, industrial devices
Moisture AbsorptionVery lowHigher
Impedance ControlBetter and more predictableLess accurate
ManufacturabilityRequires experienced processing (different drilling etc.)Easy to process using standard PCB methods

Moreover, Rogers offers a range of materials with different characteristics to cater to various application needs. From low-loss to ultra-high-frequency applications, customers can choose the most suitable material based on their specific requirements. This not only enhances design flexibility but also provides more solutions to address complex engineering challenges.

In the context of globalization, competition in the international market has intensified. Utilizing Rogers PCB materials not only elevates the technical content and competitiveness of products but also offers customers a superior service experience. With the widespread adoption of 5G technology and the development of the Internet of Things (IoT), the demand for high-performance PCBs will continue to grow, making Rogers a leader in this field.

Advantages of Rogers PCB

1. Superior High-Frequency Performance

Rogers PCBs offer excellent electrical performance at high frequencies. Their stable dielectric constant and low loss tangent minimize signal loss and dispersion, which is critical for RF and microwave applications.

2. Low Dielectric Loss

Rogers materials have very low Df (dissipation factor), reducing power loss during signal transmission. This makes them highly efficient for high-speed, high-frequency signal paths.

3. Excellent Thermal Management

Rogers laminates have better thermal conductivity compared to standard FR4, allowing for more efficient heat dissipation. This helps maintain performance in demanding temperature environments.

4. Stable Electrical Properties

Their dielectric constant remains consistent over a wide range of temperatures and frequencies, enabling precise impedance control and signal integrity in advanced circuit designs.

5. Low Moisture Absorption

Rogers materials absorb less moisture than FR4, making them reliable for outdoor, aerospace, or high-humidity environments.

6. Better Reliability for Harsh Environments

With high temperature resistance and chemical stability, Rogers PCBs perform well in aerospace, military, and industrial applications where standard FR4 may fail.

Rogers PCBs – The Ideal Choice for High-Speed Communication

Applications of Rogers PCB

1. RF and Microwave Circuits

Rogers PCBs are widely used in radio frequency (RF) and microwave communication systems, including antenna arrays, radar modules, and RF amplifiers.

2. 5G Infrastructure

Due to their low signal loss and excellent high-frequency characteristics, Rogers boards are ideal for 5G base stations, antennas, and network hardware.

3. Aerospace and Defense Systems

In aviation, satellites, and military electronics, Rogers PCBs provide the precision and durability needed for mission-critical communication and control systems.

4. Automotive Radar and ADAS

Modern vehicles use Rogers-based PCBs in advanced driver assistance systems (ADAS), radar sensors, and collision avoidance modules for reliable performance under extreme conditions.

5. Medical Imaging and Equipment

Rogers boards are used in MRI machines, RF ablation devices, and other diagnostic tools where consistent signal performance is crucial.

6. High-Speed Digital Circuits

In computing and telecommunications, Rogers materials support high-speed signal integrity for backplanes, routers, and high-frequency data transmission boards.

Applications of Rogers PCB

Conclusion

Rogers PCBs stand out globally due to their outstanding performance and broad applicability. Whether developing new communication devices or improving existing systems, choosing Rogers is a wise decision. Their commitment to innovation ensures they remain at the forefront of technological advancement, providing unparalleled solutions for tomorrow’s electronic challenges.

Best Tech is a very professional manufacturer in printed circuit board. If you are interesting to know more information for Rogers PCB and other high-speed signal transmission application for printed circuit board, please come to contact us at any time.

8-Layer PCB Stackup Design Guide | Best Technology

July 11th, 2025

Designing a reliable multilayer circuit board starts with getting the stackup right. If your project involves high-speed signals, compact layouts, or reduced EMI, an 8-layer PCB stackup is a solid choice. It offers flexibility, better performance, and room for complex routing.

In this guide, we’ll walk you through everything you need to know—layer configurations, materials, sizes, and how to make the most of this structure with the help of a trusted PCB manufacturer.

8-Layer PCB Stackup Design Guide

What is a PCB Stackup?

A PCB stackup is the arrangement of copper layers and insulating materials inside a circuit board. These layers are stacked and bonded together using prepreg (resin-impregnated fiberglass) and core materials. The goal is to create a reliable board that supports both mechanical strength and excellent electrical performance.

In simple words, the stackup decides how signal layers, power planes, and ground layers are placed in the board. In high-speed digital designs, this structure plays a big role in signal quality, electromagnetic compatibility (EMC), and overall performance.

For an 8-layer PCB, the stackup consists of eight layers of copper with alternating dielectric materials. These are usually divided into four signal layers and four plane layers, though that can change based on your design needs.

PCB Stackup Considerations

For most PCB designs, there are often competing requirements between electrical performance, manufacturing limitations, cost targets, and system complexity. The final PCB stackup is usually a result of careful trade-offs across these factors. High-speed digital circuits and RF systems commonly rely on multilayer boards for better control and performance. Below are 8 essential principles to consider when designing a reliable stackup:

1. Layer Arrangement

In multilayer PCBs, you’ll typically work with signal layers (S), power planes (P), and ground planes (GND). Power and ground planes are usually solid, unbroken areas that provide low-impedance return paths for signal currents. Signal layers are often positioned between these planes to form symmetrical or asymmetrical stripline structures. The top and bottom layers are mainly used for component placement and limited routing. It’s best to keep traces on these outer layers short to reduce direct radiation and EMI.

PCB Stackup Considerations

2. Defining a Single Power Reference Plane

Decoupling capacitors are vital for maintaining power integrity, and they can only be placed on the outer layers of the PCB. The trace length, pad design, and vias connected to these capacitors greatly affect their effectiveness. To improve decoupling, make these connections short and wide, and minimize via length. For example, in a high-speed digital system, place decoupling capacitors on the top layer, dedicate the second layer to power for the processor, use the third layer for signal routing, and assign the fourth layer as a ground reference.

3. Incorporating Multiple Ground Planes

Using multiple ground planes helps create low-impedance return paths and minimizes common-mode EMI. Ground and power planes should be tightly coupled, and signal layers should also be close to reference planes. Reducing the dielectric thickness between layers improves coupling and enhances performance.

4. Managing Multiple Power Planes

When your design includes more than one power plane, these planes are often split into different voltage regions. If a signal layer is placed next to a multi-region power layer, signal currents may not find clean return paths, leading to noise or EMC issues. For high-speed digital signals, avoid routing traces near split power planes to prevent return current discontinuities.

5. Designing Signal Routing Pairs

When a signal travels from one layer to another, it creates what’s known as a “routing pair.” Ideally, the return current should stay within the same reference plane when switching layers. In practice, however, signals often need to transition between layers. To maintain signal integrity, ensure that return paths are available through stitching vias or decoupling capacitors. Using adjacent layers as routing pairs is a practical and effective strategy.

6. Routing Direction Guidelines

Keep trace directions consistent within each signal layer. At the same time, rotate the routing direction between adjacent signal layers. For instance, use horizontal routing (X-axis) on one layer and vertical routing (Y-axis) on the next. This practice reduces crosstalk and improves signal clarity.

7. Even-Layer Designs is Better

Although odd-layer PCBs may appear cheaper due to fewer materials, they’re more expensive to manufacture. That’s because odd-layer boards require non-standard lamination processes and additional handling steps. These increase the risk of surface damage, incorrect etching, and longer production times. In contrast, even-layer PCBs are more stable, cost-effective, and easier to produce at scale.

PCB Stackup Considerations

8. Budget

Multilayer PCBs are naturally more expensive than single- or double-layer boards. However, they offer significant benefits in functionality, miniaturization, EMI control, and signal integrity. When weighing total cost versus performance, the difference between multilayer and simpler boards may not be as high as expected.

Standard 8-Layer PCB Stackup Structure

When it comes to multilayer PCB design, the arrangement of signal, power, and ground layers directly affects signal integrity, EMI performance, and power delivery. Below are three common 8-layer stackup configurations, each with its own strengths and limitations.

Standard 8-Layer PCB Stackup Structure

Option 1:

Layer 1: Signal 1

Layer 2: Signal 2

Layer 3: Ground

Layer 4: Signal 3

Layer 5: Signal 4

Layer 6: Power

Layer 7: Signal 5

Layer 8: Signal 6

This layout alternates signal and power layers but does not take full advantage of the electromagnetic shielding benefits that a multilayer board can offer. The ground and power planes are separated, reducing the board’s EMI suppression capability. In addition, the power distribution network suffers from higher impedance, which may affect voltage stability in high-speed or high-current applications.

Option 2:

Layer 1: Signal 1

Layer 2: Ground

Layer 3: Signal 2

Layer 4: Power

Layer 5: Ground

Layer 6: Signal 3

Layer 7: Ground

Layer 8: Signal 4

This structure is widely regarded as the optimal 8-layer PCB stackup. It provides excellent electromagnetic shielding through the use of multiple ground planes. Each signal layer is placed adjacent to a reference plane (either ground or power), which improves signal stability and impedance control. Additionally, the tight coupling between power and ground planes enhances EMI performance and power integrity. This setup is ideal for high-speed, high-frequency, or noise-sensitive applications.

Option 3:

Layer 1: Signal 1

Layer 2: Ground

Layer 3: Signal 2

Layer 4: Power

Layer 5: Ground

Layer 6: Signal 3

Layer 7: Power

Layer 8: Signal 4

This configuration is a variation of Option 1 with improved EMI performance. By adding an extra reference plane, it provides better control over the characteristic impedance of the signal layers. However, the placement of the second power plane (with limited coupling to a nearby ground) leads to higher power delivery impedance, which could be a drawback in power-sensitive designs. Some optimization in power layer arrangement is still needed.

8-Layer PCB Stackup Materials

The performance of an 8-layer PCB stackup relies heavily on the materials used between and around its copper layers. These materials affect everything from electrical behavior to thermal stability and even mechanical strength. Let’s look at the two main categories: conductive and dielectric materials.

1. Conductive Layers

Copper is the most common metal used for the conductive layers in an 8-layer PCB. It’s highly conductive, easy to work with, and available in different thicknesses and finishes.

  • Copper Thickness: Most boards use œ oz or 1 oz copper per layer. If the design needs to handle higher current, 2 oz or thicker copper may be used.
  • Copper Type: Standard copper foil is either electrodeposited (ED) or rolled. Rolled and annealed copper is smoother and more flexible, which makes it useful in boards that need better bend resistance.
  • Surface Finishes: The exposed copper is usually treated with a surface finish to protect it and ensure solderability. Options include HASL, ENIG, OSP, and immersion silver, among others.

2. Dielectric Layers

The dielectric materials are the insulating layers that separate the copper traces. These layers are critical for controlling impedance, heat flow, and electrical isolation.

  • FR-4: A glass-reinforced epoxy laminate, FR-4 is the most common dielectric for general-purpose PCBs. It’s reliable, widely available, and cost-effective.
  • High-Frequency Materials: For RF and high-speed digital designs, materials with low dielectric loss—like PTFE (Teflon), ceramic-filled PTFE, or hydrocarbon-based ceramics—are preferred. These support better signal integrity at high frequencies.
  • Thermal Conductive Materials: When heat dissipation is a concern, substrates like alumina or aluminum nitride are used. These materials offer higher thermal conductivity than standard epoxy systems.

To hold everything together, manufacturers use prepregs—uncured fiberglass sheets soaked in resin. Common prepreg materials include FR-4 for standard designs and polyimide for higher thermal or mechanical stress environments.

At the center of the stackup is the core, which acts like a spine for the board. This rigid layer typically uses FR-4 or polyimide, though in some high-power or high-heat applications, metal cores are added to improve thermal performance.

8-Layer PCB Thickness & Sizes

The total thickness of an 8-layer PCB depends on several factors:

  • Copper thickness: Common values are 0.5oz, 1oz, or 2oz per layer.
  • Prepreg/Core thickness: Adjusted to achieve specific impedance and board height.
  • Number of plane vs signal layers: Affects thermal and mechanical behavior.

Common Thickness Options:

  • 1.6mm (0.063″) – Industry standard, suitable for most applications.
  • 2.0mm to 2.4mm – Used when extra copper is needed for higher current.
  • 3.2mm or custom – Selected for industrial or military-grade boards.

PCB Sizes:

Panel sizes are typically 18” x 24” before routing. Your board can be as small as a few millimeters or as large as the full panel, depending on the application.

6 Layer vs 8 Layer PCB

A 6-layer PCB consists of six layers of copper circuitry stacked with insulating layers (prepreg and core) in between. It usually includes:

  • 4 Signal Layers for routing high- and low-speed signals
  • 1 Power Plane to distribute voltage
  • 1 Ground Plane to provide a return path and help with EMI suppression

A typical 6-layer stackup looks like this:

Layer 1: Signal (Top)

Layer 2: Ground

Layer 3: Signal

Layer 4: Signal

Layer 5: Power

Layer 6: Signal (Bottom)

While both 6-layer and 8-layer PCBs are widely used in advanced electronics, they serve slightly different purposes depending on design complexity, signal speed, and EMI requirements. Let’s compare them together:

Aspect6-Layer PCB8-Layer PCB
Layer Count68
Typical Configuration4 signal layers + 1 power + 1 ground4 signal layers + 2 power + 2 ground
Routing SpaceModerateMore routing room
Signal IntegrityGood, suitable for most mid-speed signalsExcellent, supports very high-speed signal routing
EMI ShieldingLimited shielding with fewer ground planesStrong EMI control due to multiple ground planes
Power DistributionSingle power plane, higher impedanceDual power planes, better PDN performance
Design ComplexityLess complex, easier to design and fabricateMore complex, better for advanced designs
Thermal PerformanceAdequate for medium power applicationsBetter heat spreading for high-power components
CostLower fabrication costHigher cost due to more layers and materials
Use CaseMid-level MCUs, general embedded, basic RFFPGAs, DDR memory, high-speed data buses, complex SoCs

Use a 6-Layer PCB if:

  • Your design isn’t extremely dense.
  • The signals don’t require tight EMI control.
  • You want to balance performance and cost.
  • There’s no strict need for multiple ground or power planes.

It’s widely used in commercial electronics that don’t involve ultra-high-speed communication or compact multilayer routing challenges.

Choose an 8-Layer PCB when:

  • High-speed signals (such as PCIe, USB 3.x, DDR4, or SERDES) are involved.
  • EMI performance is critical, especially in sensitive industrial or medical devices.
  • You need more space for routing due to a denser component layout.
  • Stable power delivery is required across multiple voltage domains.
  • You’re working with a compact form factor that demands vertical signal distribution.

An 8-layer stackup allows designers to pair every signal layer with a nearby ground or power plane, which significantly improves signal quality and reduces noise.

Benefits of Working with an Experienced PCB Manufacturer

Designing and fabricating an 8-layer PCB stackup requires precise engineering and process control. Partnering with a reliable manufacturer like Best Technology brings several benefits:

1. Stackup Design Assistance: Professional help with impedance control, signal integrity, and EMC optimization.

2. Material Expertise: Guidance in choosing suitable laminates for your specific requirements.

3. Advanced Fabrication: Capability to handle HDI, blind/buried vias, and tight tolerances.

4. Quality Assurance: Rigorous testing like AOI, X-ray, and impedance measurement.

5. Fast Turnaround: Efficient production process without sacrificing quality.

Why Choose Best Technology for Your 8-Layer PCB Stackup?

Best Technology is a trusted 8-layer PCB stackup specialist serving global customers across aerospace, medical, automotive, and industrial electronics. We hold certifications including:

  • ISO9001 for quality control
  • ISO13485 for medical electronics
  • IATF16949 for automotive-grade PCBs
  • AS9100D for aerospace applications

Our engineers assist with DFM check, impedance control, EMI reduction, thermal management, and material choices, ensuring your 8-layer design performs reliably under real-world conditions.

FAQs

1. What is the best layer configuration for an 8-layer PCB stackup?

A balanced configuration like Signal–GND–Signal–Power–GND–Signal–Power–Signal is often preferred for signal integrity and EMI control.

2. How much does an 8-layer PCB cost?

Cost varies by material, size, copper weight, and complexity, but typically ranges from $50 to $300 per board in small batches.

3. What software is used for 8-layer PCB design?

Tools like Altium Designer, Eagle, KiCAD, and OrCAD support multilayer PCB stackup planning and layout.

4. Can you use HDI features in 8-layer PCBs?

Yes. Blind and buried vias, via-in-pad, and microvias are often used in 8-layer HDI designs.

5. How do I choose the right manufacturer for 8-layer PCBs?

Look for certifications, material options, engineering support, and experience with multilayer stackups—like what Best Technology provides.

RO4350B PCB Material: Why Choose it for High Frequency PCB?

July 4th, 2025

Rogers RO4350B is one of the most popular PCB materials used in high-frequency applications today. If you’re designing circuits that need stable performance at GHz-level speeds, this material often stands out. In this blog, we’ll explore what RO4350B is, what it’s made of, available thicknesses, and why it’s preferred over other materials for high-frequency PCB designs.

What Is Rogers RO4350B Material?

RO4350B is a type of high-frequency laminate developed by Rogers Corporation. It’s engineered for performance in RF (radio frequency) and microwave applications, offering superior electrical characteristics compared to standard FR-4. Unlike generic epoxy-based materials, RO4350B uses a hydrocarbon-ceramic composition that keeps signal losses low even at high frequencies.

This material combines the electrical performance of PTFE (commonly used in high-end RF applications) with the manufacturability of FR-4, making it a cost-effective and reliable choice for high-speed designs.

What Is Rogers RO4350B Material?

What Is Rogers Material Made of?

Rogers materials, including RO4350B, are made from hydrocarbon resins with ceramic fillers and reinforced with woven glass. This composite structure delivers excellent mechanical stability and consistent dielectric properties.

Unlike traditional PTFE-based laminates, Rogers materials like RO4350B do not require special handling during PCB fabrication, which saves both time and cost. Rogers materials are engineered to balance electrical performance with ease of manufacturing, which is essential when producing high-frequency PCBs at scale.

RO4350B Dielectric Constant

The dielectric constant (Dk) is a critical factor in high-frequency PCB materials, as it affects signal speed and impedance control. The RO4350B dielectric constant is typically 3.48 ± 0.05 at 10 GHz, which is both stable and predictable over a wide range of frequencies and temperatures.

The consistency of frequencies and temperatures ensure that transmission lines behave as expected, which is especially important in RF circuits, microwave devices, and antenna structures. Stable Dk also simplifies impedance control and reduces the risk of signal reflection and distortion.

What Is the Standard RO4350B Thickness?

RO4350B PCBs are available in multiple standard thicknesses to meet different design and performance requirements. Common options include:

  • 0.254 mm (10 mil)
  • 0.508 mm (20 mil)
  • 0.762 mm (30 mil)
  • 1.524 mm (60 mil)

These thicknesses allow designers to select the best stack-up for impedance control, thermal dissipation, and mechanical strength. Depending on your signal layer, ground layer spacing, or copper weight, one of these thicknesses will likely align with your project’s needs.

RO4350B Datasheet

Before choosing a material for your RF or high-speed digital PCB, it’s essential to understand the technical specifications. Here is a summary of the most important values from the RO4350B datasheet:

PropertyTypical ValueTest Condition / Note
Dielectric Constant (Dk)3.48 ± 0.05@ 10 GHz (z-axis)
Dissipation Factor (Df)0.0037@ 10 GHz
Volume Resistivity1.7 × 10⁞ MΩ·cmASTM D257
Surface Resistivity4.4 × 10⁷ MΩASTM D257
Electrical Strength>800 V/milASTM D149
Dielectric Breakdown>40 kVASTM D149
Thermal Conductivity0.69 W/m·KASTM D5470
Coefficient of Thermal Expansion (CTE)11 ppm/°C (x, y) / 32 ppm/°C (z)-55°C to 288°C
Glass Transition Temperature (Tg)>280°C (no defined Tg)Thermomechanical analysis
Decomposition Temperature (Td)~425°CTGA method
Solder Reflow ResistanceExcellentNo delamination or blistering
Tensile Modulus1.4 × 10⁶ psi (x-y)ASTM D638
Flexural Strength20,000 psi (typical)ASTM D790
Peel Strength≄1.1 N/mmIPC-TM-650
Young’s Modulus~10 GPaEstimated from stress-strain curve
Moisture Absorption0.06%ASTM D570
Density1.86 g/cmÂłASTM D792
Flammability RatingUL 94 V-0UL 94
Water Absorption<0.1%Excellent water resistance
Material CompositionCeramic-filled hydrocarbon resin + glass fiberNon-PTFE-based
Halogen-FreeYesRoHS & REACH compliant
Available Copper Foil0.5 oz, 1 oz, 2 oz (18”m, 35”m, 70”m)Rolled and electro-deposited options available

If you need the full official datasheet in PDF format, you can also request it from Best Technology along with a quote for your project.

How Much Does Rogers PCB Cost?

Compared to FR-4, the rogers RO4350B price is higher due to its premium performance. On average, RO4350B material can cost between $8 to $25 per square foot, depending on thickness, copper weight, and supplier volume. Full PCB fabrication using RO4350B typically results in a 20–50% higher price than using standard FR-4, mainly due to the material cost and additional processing steps.

However, when you’re working with high-frequency applications—such as 5G, radar, or satellite communications—the improved signal integrity and reduced loss often justify the added cost.

What Is the Difference Between RO4003 and RO4350B?

Both RO4003 and RO4350B are part of Rogers’ high-frequency laminate series, but they have subtle differences:

FeatureRO4003CRO4350B
Dielectric Constant3.383.48
Loss Tangent0.0027 @ 10 GHz0.0037 @ 10 GHz
Flame RatingNon-UL ratedUL 94 V-0
CostSlightly lowerSlightly higher
Process CompatibilityStandard PCB processStandard PCB process

RO4003 is better suited for applications where cost sensitivity is critical and UL rating is not required. RO4350B, on the other hand, provides a better flame rating and slightly improved mechanical properties, so it is the preferred choice for commercial or defense-grade applications.

Why Choose RO4350B as High Frequency PCB Material?

High frequency PCB, also known as RF PCB, refers to a special circuit boards with relatively high electromagnetic frequencies. This PCB is mainly used in the fields of high frequency (>300 MHz or wavelengths <=1 meter) and microwaves (>3 GHz or wavelengths <= 0.1 meter). If you’re designing a high-frequency PCB, choosing RO4350B gives you the best of both worlds: high performance and ease of fabrication. Here’s why many engineers choose this material:

  • Low dielectric loss helps reduce signal attenuation.
  • Stable dielectric constant ensures consistent impedance.
  • Better thermal management compared to FR-4.
  • UL 94 V-0 flame resistance, which is crucial for safety.
  • Compatible with standard FR-4 processing, so no need for Teflon-specific tooling.

All of these feature help maintain signal quality in applications like RF transmitters, satellite receivers, and high-speed digital circuits. So even if the RO4350B price is slightly higher, it’s often more cost-effective than debugging performance issues caused by suboptimal materials.

Why Choose RO4350B as High Frequency PCB Material?

High Frequency PCB Design Guidelines

When working with RO4350B PCB material, keep the following design practices in mind to get the best results:

1. Control impedance: Use proper stack-up and trace width calculators for accurate 50Ω or 75Ω routing.

2. Minimize vias: Each via introduces inductance and can distort signals at high frequencies.

3. Short trace lengths: High-speed signals should have the shortest possible paths.

4. Proper grounding: Always include a continuous ground plane to reduce EMI and improve return paths.

5. Avoid sharp corners: Use 45-degree or curved traces instead of 90-degree angles.

6. Use differential pairs: For high-speed interfaces like USB or LVDS, tightly coupled pairs reduce crosstalk and maintain signal integrity.

Combining these techniques with the natural performance of RO4350B helps you unlock superior RF performance without increasing fabrication complexity.

Why Best Technology Is Your Reliable RF PCB Manufacturer?

At Best Technology, we specialize in high-frequency PCB manufacturing using premium materials like RO4350B, RO5880, RO4003C. With ISO-certifications, we’re equipped to serve industries ranging from automotive and medical to aerospace and communications. Whether you’re developing high-reliability prototypes or large-scale production, you can count on us as your reliable one-stop PCB & PCBA partner.

We offer:

  • Strict impedance control with advanced test equipment
  • Rapid prototyping and flexible volume production
  • Competitive RO4350B price with guaranteed traceability
  • Expert engineering support for layout and material selection
  • No MOQ requires, 1 piece available also
  • 5 years quality guarantee, free rework and functional testing
  • Free DFM check

If you’re looking to manufacture reliable high-frequency PCBs, you’re in the right place.

FAQs

1. Is RO4350B suitable for multilayer PCBs?

Yes, RO4350B is commonly used in multilayer designs for RF and microwave applications. It offers stable performance in both single and multi-layer stack-ups.

2. How does RO4350B perform at 5GHz or higher?

It maintains low loss and consistent Dk values even at frequencies above 5GHz, making it reliable for 5G and radar circuits.

3. Can RO4350B be used with FR-4 in hybrid stack-ups?

Yes, it can. Many engineers use RO4350B for RF layers and FR-4 for power/control layers to reduce cost.

4. What is the shelf life of RO4350B material?

Stored under proper conditions, it has a long shelf life—typically over a year without degradation.

5. Do I need special PCB fabrication for RO4350B?

No. Unlike PTFE-based materials, RO4350B is compatible with standard PCB fabrication processes, which simplifies manufacturing.

Contact Best Technology today to get a quote or talk with our engineers about your RF design needs.

What is the Best Solder Temperature for PCB?

July 3rd, 2025

The typical solder temperature for PCBs is 240℃ to 270℃ for lead-free soldering, and 240℃to 260℃ for lead-based soldering.

If you’re building or repairing a PCB, knowing the right soldering temperature is key. It keeps your components safe and ensures strong connections. The temperature you use depends on the type of solder and the method. In this blog, we’ll break down everything you need to know about solder temperatures for PCBs.

What is the Best Solder Temperature for PCB?

Why Solder Temperature Matters in PCB Work?

When working with printed circuit boards, one of the most critical factors for quality and reliability is soldering temperature. Whether you’re assembling prototypes, repairing a PCB, or managing high-volume production, knowing the right temperature is essential for success.

Too low, and the solder won’t melt properly. Too high, and you might damage the board or components. Accurate temperature helps create reliable joints and avoids costly rework. It also protects sensitive parts from overheating.

Solder temperature affects not only how well the joints form but also how long your product will last in real-world use. In this blog, we’ll explore the ideal soldering temperatures for different solders and methods—and how to avoid costly mistakes.

What Determines Soldering Temperature?

Soldering temperature is not a fixed value. It depends on several key factors:

  • Type of solder alloy (leaded or lead-free)
  • Soldering process (manual, reflow, wave)
  • PCB material (standard FR-4, high-Tg, ceramic, etc.)
  • Component sensitivity
  • Ambient factory temperature and humidity

Each variable impacts how heat should be applied to the board. Applying the right temperature at the right time ensures the best wetting, strong mechanical bonds, and excellent electrical contact.

Solder Types and Their Melting Temperatures

  1. Lead-Based Solder (e.g., Sn63/Pb37)
  2. Melting point: 183°C
  3. Typical working temperature: 240°C to 260°C
  4. Benefits: Good wetting, lower processing temperature
  5. Drawbacks: Contains lead; banned in many consumer products (RoHS compliance)

Lead-based solder is often used in military, aerospace, or industrial environments where reliability outweighs regulatory restrictions. It’s easier to work with and provides strong joints with less thermal stress on components.

  • Lead-Free Solder (e.g., SAC305: Sn96.5/Ag3.0/Cu0.5)
  • Melting point: ~217°C
  • Typical working temperature: 245°C to 270°C
  • Benefits: RoHS compliant, eco-friendly
  • Drawbacks: Higher processing temperature, slightly brittle joints

Lead-free solder has become the standard in modern electronics manufacturing due to environmental regulations. However, it requires precise control of temperature and time to ensure quality results.

Solder Types and Their Melting Temperatures

Soldering Methods and Their Temperature Profiles

Let’s explore how soldering temperatures vary across different processes used in PCB manufacturing and assembly.

1. Reflow Soldering

Reflow soldering is the most common method for assembling surface-mount components. A solder paste (a mix of powdered solder and flux) is applied to the PCB, and components are placed on top. Then, the board goes through a reflow oven with controlled temperature zones.

Reflow Temperature Profile (Lead-Free):

  • Preheat: 150°C–180°C for 60–120 seconds
  • Soak: 180°C–200°C for 60–90 seconds
  • Reflow Peak: 240°C–250°C for 30–60 seconds
  • Cool-down: Controlled descent to room temperature

Reflow Temperature Profile (Lead-Based):

  • Preheat: 120°C–150°C
  • Soak: 150°C–180°C
  • Reflow Peak: 210°C–230°C
  • Cool-down: Gradual cooling to avoid thermal shock
Soldering Methods and Their Temperature Profiles

The peak temperature should not exceed the maximum rating of components, and the time above liquidus (TAL) must be kept short to avoid damaging the board.

2. Wave Soldering

Wave soldering is widely used for through-hole assemblies and some mixed-technology PCBs. The board passes over a wave of molten solder.

  • Lead-Based Solder: 245°C–255°C
  • Lead-Free Solder: 260°C–270°C

Before reaching the solder wave, the PCB is preheated to about 100°C–150°C to prevent thermal shock and improve solder wetting. Flux is applied before the preheat stage to clean and prepare pads.

3. Hand Soldering

Hand soldering is still widely used in prototyping, repair work, or in low-volume custom assemblies. It uses a soldering iron with a temperature-controlled tip. Recommended tip temperatures:

  • Lead-Based Solder: 330°C to 370°C
  • Lead-Free Solder: 350°C to 400°C

While this may seem high, actual contact time is very short (1–3 seconds). A good soldering station will allow precise control and thermal recovery. Operators must avoid overheating pads or components.

Hand Soldering

Does the PCB Material Affect Soldering Temperature?

Yes—PCB material plays a major role in how much heat it can tolerate.

FR-4 (Standard)

  • Can handle up to 260°C for short durations
  • Common for most consumer and industrial PCBs

High-Tg FR-4

  • Higher glass transition temperature (Tg ~170°C to 180°C)
  • More stable under high thermal stress
  • Ideal for lead-free soldering or multilayer boards

Ceramic PCBs (Alumina, Aluminum Nitride)

  • Extremely high thermal stability
  • Can endure 300°C+ without damage
  • Requires more precise soldering to avoid cracking

Metal Core PCBs (Aluminum, Copper Core PCB)

  • Withstand up to 260°C for short durations
  • High thermal conductivity due to the metal core
  • Used in: Power electronics, lighting, and automotive control

Aluminum boards dissipate heat quickly, which helps during soldering. However, the uneven expansion between the metal and dielectric layer requires careful control to avoid mechanical stress during reflow.

Flex Circuits (Flexible PCBs)

  • Max soldering temperature: Typically <250°C
  • Material: Polyimide or PET base
  • Critical risk: Heat can distort, shrink, or damage traces

Flexible PCBs are more heat-sensitive than rigid boards. The polyimide or PET base can tolerate soldering but has lower thermal mass, which means it heats up—and cools down—faster. Excessive temperature or contact time can easily cause:

  • Wrinkling or warping
  • Delamination of copper traces
  • Tearing at bend areas

When soldering flex circuits:

  • Use lower reflow peak temperatures, typically not exceeding 240°C–245°C.
  • Apply thermal barriers or stiffeners in vulnerable areas.
  • Ensure the heating and cooling are gradual to prevent mechanical stress.

Flex PCBs often use selective soldering or low-temperature solders to reduce heat exposure. In some cases, hot-bar soldering or laser soldering is used for better temperature precision.

Common Soldering Issues Related to Temperature

IssueCausePrevention
Cold jointsTemp too lowRaise temperature or improve heat transfer
Component damageTemp too high or too longShorten dwell time, use proper profiling
Solder bridgesExcess solder, poor controlUse precise stencil and paste volume
PCB delaminationOverheatingStay below board’s Tg and Td
Cracked jointsThermal shock during coolingUse controlled cooling stage

Why Choose Best Technology’s PCB Soldering Service?

At Best Technology, we ensure every PCB assembly follows strict soldering standards. Our team uses professional thermal profiling tools to fine-tune the temperature curve for each product.

We support:

  • RoHS-compliant lead-free soldering
  • Lead-based solder for specialized industries
  • High-Tg and ceramic PCBs
  • Automated reflow and wave soldering
  • Manual soldering by IPC-trained operators

Suppose you have any questions about our products and service, price, MOQ, delivery, location, quality standards, certificates, engineering support and so on. We offer engineering support, thermal profiling, and high-quality PCB manufacturing for all your assembly needs. Please contact us freely any time. We aim to be the best PCB manufacturers in China to supply our customers with the best quality, price, and services. Contact us right now to discuss your next PCB project or to request a quote!

FAQs

1. What is the ideal soldering temperature for lead-free solder?

A peak reflow temperature of 245°C–250°C is typical. Manual soldering may require a tip temp of 350°C–370°C.

2. Can I use the same temperature for leaded and lead-free solder?

No. Lead-free solder needs a higher temperature due to its higher melting point.

3. Will high soldering temperatures damage my PCB?

If temperatures are too high or sustained too long, they can cause delamination, burnt pads, or component failure. Use proper profiling.

4. What’s the difference between peak temperature and tip temperature?

Peak temperature is the highest board temp during reflow. Tip temperature is the iron’s surface heat during manual soldering.

5. How can Best Technology help with soldering specifications?

We provide detailed thermal profiles, component-safe soldering, and high-reliability assembly for all PCB types.

ISOLA 370HR High Frequency PCB

July 2nd, 2025

Isola 370HR is a well-established choice for engineers who need a durable, high-frequency compatible PCB base material. Its high Tg, low loss, and excellent reliability make it suitable for everything from aerospace to telecommunications.

If you’re working on a complex design or RF application, switching to Isola 370HR PCB materials might be the upgrade you need. And with a reliable partner like Best Technology, you’re assured of quality from the first prototype to volume production.

ISOLA 370HR High Frequency PCB

What Is Isola 370HR Material?

Isola 370HR is a high-performance, high-Tg epoxy laminate and prepreg system developed by Isola Group. Designed specifically for multilayer printed circuit boards, it offers a great balance between electrical stability and thermal durability. It’s classified as a high-Tg FR4 material but provides better signal handling and thermal behavior compared to standard FR4.

Isola engineered this material for demanding sectors like telecommunications, data networking, and military electronics. Its low dielectric loss and stable performance across a wide frequency range make it suitable for modern high-speed circuits.

Advantages of Using Isola 370HR in PCB Manufacturing

Choosing Isola 370HR for your PCB manufacturing brings several key benefits that directly impact the performance and reliability of your finished products:

  • Superior Thermal Stability: With a high glass transition temperature (~180°C), Isola 370HR withstands the high temperatures of lead-free soldering and multiple reflow cycles without warping or delamination.
  • Low Dielectric Loss: This material minimizes signal loss at high frequencies, making it perfect for RF circuits and high-speed digital designs.
  • Excellent Signal Integrity: Stable dielectric constant (Dk) across frequency ranges means consistent signal propagation and reduced timing errors.
  • Enhanced Moisture and CAF Resistance: Improved resistance to moisture-induced failures helps maintain long-term reliability, especially in humid or harsh environments.
  • Dimensional Stability: Reduced Z-axis expansion ensures layers stay aligned during manufacturing and operation, critical for multilayer PCBs.
  • IPC Compliance: Isola 370HR meets rigorous industry standards, ensuring compatibility with demanding aerospace, automotive, and medical applications.
  • RoHS and Environmental Compliance: Fully compliant with environmental regulations, supporting green manufacturing practices.
Advantages of Using Isola 370HR in PCB Manufacturing

ISOLA 370HR Datasheet

PropertyTypical ValueTest Method / Notes
Glass Transition Temperature (Tg)180°C (DSC)Differential Scanning Calorimetry
Decomposition Temperature (Td)>340°CTGA (Thermogravimetric Analysis)
Dielectric Constant (Dk)4.04 @ 1 GHzIPC-TM-650 2.5.5.5
Dissipation Factor (Df)0.0127 @ 1 GHzIPC-TM-650 2.5.5.5
Coefficient of Thermal Expansion (CTE)15 ppm/°C (X-Y), 65 ppm/°C (Z)IPC-TM-650 2.4.24
Thermal Conductivity0.4 W/m·KASTM E1461
Tensile Strength24,000 psiIPC-TM-650 2.4.18
Flexural Strength32,000 psiIPC-TM-650 2.4.4
Water Absorption<0.10%IPC-TM-650 2.6.2.1
Flammability RatingUL 94 V-0UL 94
Copper Peel Strength>1.0 lbs/inchIPC-TM-650 2.4.8
Surface Resistivity>1×10^6 ohmsASTM D257
Volume Resistivity>1×10^9 ohm-cmASTM D257
Dielectric Breakdown Voltage>50 kV/mmIPC-TM-650 2.5.6

What Is the Difference Between FR4 and 370HR?

While both standard FR4 and Isola 370HR are epoxy-based materials widely used in PCB manufacturing, they differ significantly in performance—especially when it comes to high-speed and high-frequency applications.

Standard FR4 is the go-to material for many general-purpose PCBs. It offers decent mechanical strength, good manufacturability, and cost-effectiveness for everyday electronics. However, its glass transition temperature (Tg) typically ranges from 130°C to 140°C, and it has relatively higher dielectric loss (Df). These limitations can cause signal degradation and reliability issues in circuits operating at higher frequencies or elevated temperatures.

In contrast, Isola 370HR is a high-Tg FR4 variant designed to meet the demands of more challenging environments. Its Tg is around 180°C, which provides superior thermal stability during lead-free soldering and extended use in high-temperature settings. More importantly, it exhibits a lower dielectric constant (Dk) and dissipation factor (Df), which translates to lower signal loss and better signal integrity at microwave and radio frequencies.

What Is the Difference Between FR4 and 370HR?

Why Isola 370HR PCBs Are Suitable for High Frequency Applications?

As electronic devices evolve to support faster data rates, the performance of PCB materials under high-frequency conditions has become a serious concern. This is where Isola 370HR PCB materials shine.

Its consistent dielectric constant (Dk) and low dissipation factor (Df) ensure that high-frequency signals do not lose strength or become distorted. That’s a major reason why 370HR is used in:

  • Gigabit Ethernet systems
  • High-speed backplanes
  • Automotive radar systems
  • Satellite communications
  • Advanced test equipment

Its ability to handle GHz-level signals without distortion helps maintain data accuracy and reduces EMI-related issues.

When to Choose Isola 370HR Material for Your PCB?

You might consider Isola 370HR when your design falls into any of the following categories:

High-speed or RF designs: If your circuit runs at over 1 GHz, this material can preserve signal quality.

  • Multilayer PCBs: When stacking 8 or more layers, 370HR offers great registration control and stability.
  • Thermal stress tolerance: It performs reliably through multiple reflow cycles and temperature extremes.
  • CAF-resistant needs: Ideal for products exposed to moisture or long-term outdoor use.
  • Strict industry compliance: It meets IPC-4101/126 and 129, as well as UL and RoHS requirements.

Choosing this material isn’t just about performance—it’s about peace of mind over the product’s lifecycle.

When to Choose Isola 370HR Material for Your PCB?

How to Identify Genuine Isola 370HR PCB Material?

To avoid counterfeit materials or unverified substitutions, it’s important to:

  • Request the original datasheet with the Isola logo and batch number.
  • Check board markings for Isola brand identification or laminate codes.
  • Work with certified suppliers who purchase directly from Isola or its authorized distributors.
  • Ask for certification documents, especially if your application is regulated by aerospace or medical standards.
  • Genuine Isola 370HR PCB materials ensure consistency in production and performance.

Typical Applications of Isola 370HR in PCB Design

Here are common industries and devices where Isola 370HR is frequently used:

  • Telecommunications: High-speed switches, routers, and fiber optic systems.
  • Aerospace and Defense: Radar, avionics, satellite boards.
  • Medical Equipment: Imaging devices, patient monitoring systems.
  • Automotive: Advanced driver-assistance systems (ADAS), LiDAR modules.
  • Industrial Automation: Motor controls, power management systems.

Designers across these sectors rely on its thermal reliability and signal control to reduce field failures.

What Is the Equivalent of Isola 370HR?

While Isola 370HR is a preferred material, there are other options that offer similar characteristics. Here’s how some alternatives compare:

Material NameTg (°C)Df @ 1GHzNotable Feature
Nelco N4000-13EP~180~0.013Known for stability
Panasonic MEGTRON 6~185~0.0025Ultra-low loss, but expensive
Ventec VT-47~180~0.014Cost-effective option

If you need better electrical performance than 370HR, MEGTRON 6 is a great choice. For general high-frequency use with cost control, 370HR remains the most balanced option.

Why Choose Best Technology for Isola 370HR PCB Manufacturing?

With over 18 years of experience in printed circuit boards and as one of the leading PCB manufacturers, we support over 1,000 customers in different industrial areas worldwide. You can count on a PCB board manufacturer like us to meet your one-stop electronics manufacturing demands.

We are your one-stop PCB manufacturer in China who can meet all your diversified PCB requirements. We have an experienced engineering, production, and quality team that fully understands the unique needs of your industry—especially in medical, automotive, and aerospace applications. As a printed circuit board manufacturer, we always follow the most widely accepted standards in the industry: IPC-A-600 for fabrication and IPC-A-610 for PCB assembly. All our products meet IPC Class 2 by default, and we can also meet Class 3 or 3A when your application requires it.

If you have any questions about our products, services, pricing, lead times, quality control, certifications, or technical support, please feel free to contact us anytime. Our goal is to be one of the best PCB manufacturers in China, offering exceptional quality, fair pricing, and professional service.

FAQs

1. Is Isola 370HR good for RF applications?

Yes, it offers low dielectric loss and stable Dk, perfect for high-frequency circuits.

2. How is Isola 370HR different from standard FR4?

It has higher Tg, better thermal stability, and lower signal loss.

3. What industries use Isola 370HR PCB materials?

Telecom, automotive, aerospace, medical, and industrial electronics.

4. Can Isola 370HR support lead-free assembly?

Yes, it’s fully compatible with RoHS and lead-free soldering processes.

5. Where can I get a quote for Isola 370HR PCB fabrication?

Contact Best Technology for fast, custom quotes and expert support.

11 Best High Speed PCB Routing Rules

July 1st, 2025

High speed PCB routing plays a critical role in signal integrity, system performance, and EMI control. When designing boards that operate at higher frequencies or faster edge rates, simple routing mistakes can lead to severe issues—such as signal reflections, timing delays, and crosstalk.

To help engineers and designers avoid these common pitfalls, we’ve outlined the 11 most effective high-speed PCB routing practices to keep your circuits stable and reliable.

11 Best High Speed PCB Routing Rules

1. Use Short and Direct Signal Paths

In high-speed designs, longer traces become transmission lines. This causes delays and possible signal degradation. The longer the path, the more distortion your signal might encounter. That’s why you should keep all critical nets—like clocks, differential pairs, and high-speed data lines—as short and direct as possible.

For example, a 2-inch trace might seem negligible, but at 5Gbps speeds, even a small delay could impact timing budgets. The best routing practice is to go from point A to point B without meandering.

2. Maintain Controlled Impedance

High-speed signals don’t just travel—they reflect if the impedance isn’t consistent. This is where controlled impedance routing comes in. You need to maintain a specific impedance value (typically 50Ω for single-ended or 100Ω for differential signals).

To achieve this:

  • Choose the correct trace width based on the PCB stackup.
  • Keep dielectric thickness uniform.
  • Avoid inconsistent copper weights.

Best Technology helps you calculate and verify impedance before production using simulation tools and TDR measurements.

3. Avoid 90-Degree Trace Bends

Sharp bends look neat, but at high frequencies, they act like mini antennas. A 90-degree corner changes the trace width at the bend, creating impedance discontinuity and increasing EMI.

Instead of sharp corners, route traces using:

  • Two 45-degree angles
  • Or a smooth arc
11 Best High Speed PCB Routing Rules

This method maintains uniform impedance, reduces reflections, and looks cleaner from a manufacturing standpoint.

4. Implement Solid and Continuous Ground Planes

Every signal needs a return path, and that path usually travels directly under the trace on the ground plane. If that plane is broken or has cutouts, the return path becomes longer and induces unwanted noise.

To fix this:

  • Place a solid, unbroken ground plane beneath high-speed layers.
  • Avoid crossing plane splits with high-speed signals.
  • Minimize layer transitions that force return paths to detour.

Best Technology uses dedicated ground planes and simulation validation to ensure return paths are uninterrupted.

5. Match Lengths of Differential Pairs

Differential pairs, such as USB, HDMI, or LVDS lines, must be length-matched to prevent signal skew. If one trace is longer than the other, the timing mismatch can cause errors.

Some tips:

  • Match lengths to within a few mils.
  • Maintain consistent spacing (edge-to-edge).
  • Route them together, avoiding different layers unless absolutely needed.

At Best Technology, we support tight differential pair matching down to ±5 mil during production.

6. Minimize the Use of Vias

Every via adds capacitance and inductance, which degrades signal quality. High-speed signals don’t like jumping between layers unless absolutely necessary.

If you must use vias:

  • Keep them short and consistent.
  • Avoid unnecessary layer transitions.
  • Use via stitching to maintain continuous return paths.

Our engineering team optimizes via placement and offers blind and buried vias for complex HDI boards to reduce signal loss.

11 Best High Speed PCB Routing Rules

7. Use Proper Termination Techniques

Termination prevents reflections and stabilizes high-speed signals. Whether it’s series, parallel, or AC termination, it depends on your driver and load setup.

For instance:

  • Series termination works well for point-to-point connections.
  • Parallel termination helps in multi-drop setups.

Improper termination can cause overshoot, ringing, or logic errors. We assist customers in selecting proper termination resistors during DFM review.

8. Isolate Analog and Digital Grounds

Mixing analog and digital signals is risky. Digital circuits generate switching noise that can interfere with sensitive analog components.

Good layout practices include:

  • Keeping analog and digital circuits physically separated.
  • Avoiding crossover between analog and digital return paths.
  • Using ground islands connected at a single point if necessary.

Our layout reviews always evaluate signal isolation to avoid interference in mixed-signal boards.

9. Route Differential Pairs Together

Differential pairs must be routed together, in parallel, and on the same layer. If one signal strays away or loops, it creates an imbalance, which defeats the benefit of differential signaling.

Also:

  • Avoid routing them across split planes.
  • Keep them tightly coupled (consistent spacing).
  • Avoid fan-out unless necessary at termination points.

Our advanced PCB manufacturing equipment keeps tight trace spacing and alignment even on high-density interconnects (HDI).

11 Best High Speed PCB Routing Rules

10. Observe Return Current Paths

High-speed return currents don’t follow the shortest path—they follow the path of least inductance, usually right beneath the trace.

Interrupting that path causes:

  • Ground loops
  • Crosstalk
  • Increased EMI

To prevent this:

  • Avoid crossing plane splits with signal traces.
  • Use stitching vias to keep the return path near.
  • Place decoupling capacitors close to where the signal changes layer.

We validate return paths during layout verification using signal integrity tools.

11. Use Stitching Capacitors and Ground Vias

To suppress high-frequency noise and EMI:

  • Use stitching capacitors between power and ground.
  • Place ground vias near signal transitions and connectors.
  • These components act like firewalls, keeping noise from traveling across the board.

We help customers determine the best placement for decoupling caps and ground stitching to maintain signal purity.

11 Best High Speed PCB Routing Rules

Why Trust Best Technology for Your High-Speed PCB Projects?

At Best Technology, we specialize in advanced PCB manufacturing and assembly solutions, supporting industries like automotive, aerospace, medical, and telecom. With ISO-certifications, we bring rigorous quality control to every project.

Since its establishment in 2006 as a printed circuit board manufacturer, Best Technology has focused on high-quality, low to medium-volume PCB fabrication, PCB assembly and electronics manufacturing. Our products and services include 1-40 layers printed circuit boards, thru-hole assembly, SMT assembly including BGA assembly, components sourcing, turnkey box build and electronic product development. Whether you need quick-turn prototypes or volume production with controlled impedance, we’re your reliable partner in high-speed design.

Want Reliable High-Speed PCBs? Contact Best Technology Today!

High-speed PCB design is more than just routing—it’s about understanding physics, signal behavior, and layout strategy. At Best Technology, we not only manufacture your boards, but also optimize them for real-world performance.

Whether you need HDI PCBs, controlled impedance, differential pair routing, or quick prototypes, our team is ready to help.

👉 Let’s turn your next design into a high-speed success. Contact us now to get a quote or design consultation!

Frequently Asked Questions (FAQs)

1. What is considered a high-speed signal in PCB design?

Any signal with a rise/fall time below 1ns or operating above 100MHz is considered high-speed, as it starts behaving like a transmission line.

2. Can I use auto-routing for high-speed signals?

Auto-routers are not recommended for high-speed nets. Manual routing provides better control over trace length, impedance, and matching.

3. What is skew in differential pairs?

Skew refers to the time delay between the two signals in a differential pair. Skew can cause data errors and must be minimized.

4. How do I calculate trace impedance?

Trace impedance depends on trace width, thickness, dielectric height, and PCB material. Use online calculators or simulation tools like Polar or Altium.

5. Can I run high-speed signals on outer layers?

It’s better to route high-speed signals on internal layers between solid ground planes to reduce EMI and maintain impedance.

PCB Routing Angle Rules: 45-Degree Angle Vs 90-Degree Angle

July 1st, 2025

In PCB layout design, routing angles have a direct impact on signal integrity, manufacturing quality, and overall board performance. The two most common routing angles—45-degree and 90-degree—have long been debated among engineers and designers. While both have their uses, the choice between them depends on electrical performance, fabrication processes, and design goals.

This blog explores the differences between 45-degree and 90-degree routing angles. We’ll break down how each angle affects your board’s reliability, signal flow, and manufacturability. You’ll also get practical insights into when and why to choose one over the other.

PCB Routing Angle Rules: 45-Degree Angle Vs 90-Degree Angle

Why Routing Angles Matter in PCB Design?

Routing angles may seem like a minor detail, but they carry more weight than you might expect. When copper traces change direction sharply, it impacts how current flows through the circuit. This is especially critical for high-speed and high-frequency designs. Uneven trace transitions can cause reflections, impedance discontinuity, and even signal degradation.

Aside from performance, routing angles influence how easy it is to manufacture, etch, and inspect the board. Smooth routing not only helps the signals but also improves the final product’s consistency and durability.

What Is a 90-Degree Routing Angle?

A 90-degree angle in PCB routing refers to a sharp right-angle corner where a trace takes a turn. It is often called a right-angle bend and used mostly in older or simpler PCB layouts.

Characteristics:

  • Easy to draw and route.
  • Common in low-frequency, analog, or single-layer PCBs.
  • Produces a clear, angular look on CAD tools.

Despite its simplicity, the 90-degree bend has downsides when it comes to electrical performance and manufacturing precision, which we’ll explore in detail later.

What Is a 45-Degree Routing Angle?

A 45-degree angle is a more gradual, beveled bend in PCB traces. Instead of a sharp corner, the trace changes direction at an angle, forming a smoother path. Some layouts even use two 45-degree bends to make a soft curve.

Characteristics:

  • Smoother current flow.
  • Reduced signal reflection.
  • Preferred for high-speed and high-frequency circuits.
PCB Routing Angle Rules: 45-Degree Angle Vs 90-Degree Angle

Many modern CAD tools default to 45-degree routing due to its positive effect on signal integrity and trace etching quality.

Main Differences Between 45-Degree and 90-Degree Angles

Feature45-Degree Angle90-Degree Angle
Signal IntegrityBetter, due to smooth transitionsWorse, due to corner reflections
EMI/EMCLower emissionsHigher emissions
ManufacturingEasier to etch; fewer defectsEtch traps can form at corners
Trace LengthSlightly longerShorter, more direct
CAD ComplexitySlightly harder to route manuallyVery easy to route
Aesthetic & ProfessionalismIndustry standard for high-speedLooks dated in modern designs

Why 90-Degree Angles Can Be a Problem?

1. Impedance Discontinuity

Sharp corners create impedance mismatches that disrupt uniform signal travel. This is especially noticeable in controlled impedance traces, where precision is key. Signal reflection at a 90-degree turn can distort waveforms and cause errors in communication lines.

2. Electromagnetic Interference (EMI)

A sharp angle acts like a small antenna. This increases electromagnetic emissions, which may lead to your product failing EMI compliance tests. It also raises the risk of cross-talk in dense layouts.

3. Etching Defects

During fabrication, etching around a sharp 90-degree corner can cause acid traps, where chemical etchants get stuck and over-etch the copper. This can weaken the trace or cause open circuits.

4. Signal Reflection

Right-angle bends can cause signal reflection and ringing, particularly at high frequencies. This distorts the signal waveform and affects timing, which is critical in fast digital or RF systems.

Why 45-Degree Routing Is Widely Used?

The use of 45-degree routing in PCB design has become a standard practice in the industry. While older layouts sometimes featured sharp 90-degree angles for simplicity, most modern PCB designs now adopt 45-degree bends. Below are the key factors that explain why 45-degree routing is widely used.

Why 45-Degree Routing Is Widely Used?

1. Smoother Signal Transitions

In high-speed PCB designs, signal integrity is everything. Signals travel along copper traces like waves, and any abrupt direction change can reflect or distort the waveform. A 90-degree corner creates a sudden path change, which introduces a small but sharp discontinuity.

2. Lower Electromagnetic Interference (EMI)

Electromagnetic interference (EMI) is a growing concern in today’s electronics, especially in wireless and communication systems. Sharp trace corners such as 90-degree bends tend to behave like antennas. They concentrate electric fields and can emit higher levels of radiation, contributing to EMI. Designs that follow 45-degree routing are more likely to pass EMI compliance tests and meet international standards for electromagnetic compatibility.

3. Improved Manufacturability

From a manufacturing point of view, sharp corners can introduce several problems. During the etching process, chemical etchants used to remove unwanted copper may get trapped in 90-degree corners. These are known as acid traps. They can lead to over-etching, where too much copper is removed, or even undercutting, which weakens the trace at the bend.

4. Better Heat Distribution

Although routing angles don’t directly affect thermal conductivity, trace shapes can influence heat flow, especially in power boards. Smooth traces, like those formed with 45-degree bends, allow more even heat distribution along the path. Sharp corners may act as stress points where heat can build up, potentially weakening the copper over time.

5. Supports High-Speed and RF Design Standards

High-speed digital and RF designs demand strict control over trace geometry, impedance, and layout structure. In such designs, even minor trace irregularities can lead to signal degradation, noise coupling, or timing issues. Most high-speed PCB design guidelines—such as those for DDR memory, USB 3.0, HDMI, or RF transceivers—explicitly discourage the use of 90-degree angles.

How to Avoid 90-Degree Angles in PCB Design?

Most PCB layout software supports angle snapping, which makes it easy to design 45-degree routes. Here are a few tips:

  • Use 45-degree snap mode in your routing tool.
  • Use arc routing for smoother transitions in sensitive areas.
  • Double-bend technique: Instead of a single 90-degree, use two 45-degree bends to redirect the trace.

Check your DRC (Design Rule Check) for right-angle warnings if available.

PCB CAD Tools That Help With Angle Rules

CAD SoftwareRouting Features
Altium Designer45-degree snap, arc routing, right-angle DRC checks
KiCadPush-and-shove routing with 45-degree control
EAGLEAdjustable angle routing; user can disable 90-degree
OrCADPrecision routing tools for high-speed design
EasyEDASnap-to-45 built-in, ideal for quick layouts

Industry Standards and Best Practices

Several industry guidelines recommend using 45-degree angles, especially for high-speed circuits. Some key takeaways:

  • IPC standards encourage smooth trace transitions.
  • Many RF and microwave design rules prohibit 90-degree bends.
  • Professional board reviewers often flag right angles as poor practice.

Following these standards doesn’t just improve performance—it also gives clients and manufacturers confidence in your designs.

Common Myths About Routing Angles

Myth 1: 90-Degree Bends Always Break the Signal

Not always. If you’re working with low-speed signals or power lines, the impact is negligible. The problem grows with frequency, edge rate, and sensitive signals.

Myth 2: 45-Degree Routing Takes More Space

It may take a tiny bit more space, but not enough to justify poor signal integrity. Most modern designs can accommodate 45-degree bends with minor effort.

Myth 3: 90-Degree Angles Are Cheaper to Fabricate

Not true. They can actually increase manufacturing costs due to over-etch risks or inspection failures.

Why Choose Best Technology for PCB Design and Manufacturing?

At Best Technology, we go beyond just making PCBs. We help you design better boards from the start. Whether you’re routing high-speed digital signals or managing dense analog layouts, our engineering team follows best practices—including angle rules—to improve your product’s performance.

We are certified under ISO9001, ISO13485, IATF16949, and AS9100D, with an MES system that ensures traceability and quality control. We specialize in both standard and complex PCB manufacturing, including HDI, RF, and metal-core designs.

Contact Us Today

If you need help with routing strategy or want high-quality PCB production, our team is ready. From prototype to volume production, we can support your needs with fast delivery, quality control, and engineering guidance.

📩 Reach out now to get your quote and talk to our experts.

FAQs

1. Do 90-degree angles always cause EMI issues?

Not always. At low frequencies, the impact is minimal. But in high-speed or RF designs, they can be problematic.

2. Is 45-degree routing mandatory for all traces?

It’s not mandatory, but it’s highly recommended for signal traces, especially in complex or fast designs.

3. Can I use rounded corners instead of 45-degree angles?

Yes. Rounded corners are even better for very high-speed signals but may increase layout complexity.

4. Are 90-degree bends allowed in power planes?

Yes. Since power planes don’t carry high-speed signals, 90-degree turns are generally safe there.

5. How can I check for right angles in my layout?

Use your PCB tool’s DRC (Design Rule Check) to scan for sharp angles or manual review if needed.