pcb
Home > Blog

Posts Tagged ‘sinkpad pcb’

Custom PCB Sinkpad for High-power LED Solutions
Friday, May 23rd, 2025

High-power LED applications come with a serious challenge: heat. When LEDs generate too much heat and it’s not properly managed, it can shorten the life of the light, affect its brightness, or even cause total failure. That’s where SinkPAD PCBs come in. Unlike regular MCPCBs, a SinkPAD PCB offers a direct thermal path that transfers heat away from the LED quickly and effectively. If you’re working with powerful LEDs, custom SinkPAD PCBs can make a big difference. At Best Technology, we specialize in custom SinkPAD solutions designed for maximum heat dissipation and long-term reliability.

What is a SinkPAD PCB and How Does it Work?

A SinkPAD PCB is a type of metal core PCB designed specifically for high-thermal performance. The term “SinkPAD” refers to a patented technology where the thermal pad of the LED is directly connected to the metal base of the PCB, creating an uninterrupted thermal path. In traditional MCPCBs, a dielectric layer sits between the copper circuit layer and the metal base, reducing thermal conductivity. But in a SinkPAD design, that barrier is removed or minimized in the area under the LED, allowing heat to flow directly to the metal core and then to the heatsink.

Custom PCB Sinkpad for High-power LED Solutions

Why is Thermal Management So Critical in High-Power LED Applications?

LEDs are efficient, but they’re not immune to heat. In fact, around 70%–85% of the electrical energy in an LED is converted into heat. If that heat isn’t quickly removed, it can cause several issues:

  • Decreased light output (lumen depreciation)
  • Color shifting over time
  • Shorter lifespan
  • Component failure in extreme cases

Good thermal management maintains LED brightness, performance, and stability. For high-power LEDs, such as those used in automotive headlights or industrial lighting, standard cooling methods often fall short. That’s why advanced thermal solutions like custom SinkPAD PCBs are essential — they offer superior heat dissipation to keep your LEDs working reliably.

What are the Advantages of Custom SinkPAD PCBs for LED Projects?

Choosing a custom SinkPAD PCB means tailoring the thermal design to fit your exact LED setup. Here are the key benefits:

  • Better heat dissipation: The direct thermal path lowers the junction temperature, which helps maintain brightness and prevent overheating.
  • Compact design: You can eliminate bulky heatsinks, which saves space in your lighting product.
  • Improved reliability: Lower operating temperatures lead to fewer failures and longer LED lifespan.
  • Higher power density: You can run brighter or more LEDs in a small area without worrying about thermal overload.
  • Consistent performance: No hotspots or uneven heat spread — just stable and predictable operation.

A custom SinkPAD solution allows you to match the board layout, materials, and thickness exactly to your LED requirements, which is especially helpful for complex or high-end lighting systems.

Custom PCB Sinkpad for High-power LED Solutions

What Materials are used in SinkPAD LED PCBs?

The choice of materials is crucial for any high-performance PCB, especially one handling thermal management. In SinkPAD PCBs, the most common materials include:

  • Aluminum base: Widely used due to its cost-effectiveness and good thermal conductivity. Suitable for medium-power LED applications.
  • Copper base: Offers superior heat conductivity compared to aluminum and is typically used in ultra-high-power or demanding environments.
  • High-thermal conductivity dielectric (if used): In areas not using the exposed metal pad, a thin dielectric layer may still be present. The goal is to keep thermal resistance as low as possible.

At Best Technology, we work with both aluminum and copper bases and can advise on the best choice depending on your heat requirements and budget.

How is a SinkPAD PCB Manufactured?

The SinkPAD PCB manufacturing process requires high precision and special techniques to expose the thermal pad directly to the metal base. Here’s how it typically works:

  1. Material preparation: Selection of copper or aluminum core with appropriate thickness.
  2. Drilling and routing: Laser or mechanical drilling is used to create openings that allow the thermal pad to contact the base metal directly.
  3. Etching and circuit formation: Copper traces are etched for the electrical circuit.
  4. Thermal pad exposure: Dielectric material is selectively removed from under the LED thermal pad area.
  5. Plating and finishing: Surface finishes like ENIG or OSP are applied to the copper pads.
  6. Testing and inspection: Thermal and electrical tests ensure the board performs as intended.

This process allows the heat from the LED to travel through the exposed pad directly into the metal base, rather than relying on thermal via stacking or thick dielectric layers.

Where are SinkPAD PCBs Used in Real Applications?

SinkPAD PCBs are used in any application where high power and reliable thermal control are required. Here are some real-world examples:

  • Automotive headlights and fog lamps: Require compact designs and powerful light with efficient heat dissipation.
  • Industrial floodlights: Often run for long hours and need stable performance under high thermal stress.
  • Medical lighting: Such as surgical lights that demand high brightness and zero failure during operation.
  • UV curing systems: Used in printing and adhesives, which generate intense heat.
  • Stage or studio lighting: Where color consistency and brightness are key, and high-powered LEDs are standard.

These applications benefit from the direct thermal pathway offered by SinkPAD PCBs, ensuring the LEDs can operate at full brightness for long periods without failure.

Design Considerations of SinkPAD PCB in LED Lighting Devices

When designing a SinkPAD PCB for LED lighting, it’s not just about efficient heat dissipation — it’s about optimizing performance, reliability, and manufacturability. Here are the key factors to consider:

1. LED Thermal Pad Alignment

Ensure the thermal pad of the LED package aligns precisely with the exposed metal area of the SinkPAD. Any misalignment can increase thermal resistance and reduce heat transfer efficiency.

2. Base Metal Selection

Aluminum is cost-effective and sufficient for many applications, but copper is preferable for ultra-high-power LEDs due to its superior thermal conductivity. Choose the base metal based on your LED’s power output and operating environment.

3. Board Thickness

The thickness of the metal core affects both heat spreading and mechanical strength. Thicker cores (e.g., 2.0mm copper or aluminum) can handle more heat but may increase the overall weight and cost.

4. Dielectric Isolation (If Applicable)

In areas that don’t require direct heat transfer, a thin dielectric layer may still be used. Select materials with high thermal conductivity (>1.0 W/m·K) and low thermal resistance to maintain performance.

5. Surface Finish

For high-reliability soldering and corrosion resistance, finishes like ENIG (Electroless Nickel Immersion Gold) or OSP (Organic Solderability Preservative) are commonly used. Choose a finish compatible with your LED’s soldering profile.

6. Component Layout and Spacing

Leave enough space between LEDs and other heat-sensitive components. This helps prevent local hotspots and ensures even heat distribution across the board.

How Does Best Technology Serve You for Custom SinkPAD PCBs?

Choosing the right SinkPAD PCB partner is as important as the design itself. Here’s how Best Technology supports you at every step:

  • Advanced thermal engineering support
  • Material flexibility including copper and aluminum
  • Custom layout design
  • Certified quality system
  • Full traceability
  • Fast quoting and prototyping

With over a decade of experience in custom thermal PCB design, Best Technology is your reliable partner for SinkPAD LED solutions.

FAQs

1. What’s the difference between SinkPAD and standard MCPCBs?

Standard MCPCBs use a dielectric layer between the LED and the metal core, while SinkPAD removes that layer under the thermal pad for direct heat transfer.

2. Can SinkPAD PCBs handle very high-wattage LEDs like 10W or 50W?

Yes. SinkPAD PCBs are specifically designed for high-wattage LEDs where rapid and efficient heat dissipation is critical.

3. Is copper better than aluminum for SinkPAD PCBs?

Copper offers better thermal conductivity than aluminum, but it’s also more expensive. The choice depends on your application and thermal budget.

4. Are SinkPAD PCBs only used for LED lighting?

While they’re most commonly used in LED applications, they can be used in any high-power electronics needing excellent thermal control.

5. How can I get a quote for a custom SinkPAD PCB?

Simply send us your Gerber files and project details. Our engineering and sales team will respond with a tailored solution and quotation within 24 hours.

You may also like

5 Factors Affect the Price of Sinkpad PCB
Tuesday, May 20th, 2025

What is Sinkpad Copper Based PCB?

A sinkpad copper based PCB, also known as SinkPAD board or thermoelectric copper separation copper based PCB, is a specialized type of metal core printed circuit board. It mainly consists of two major parts: the top trace layer and the copper core/substrate. The top trace layer contains the electrical traces for the circuit, while the copper core serves as a heatsink.

A 1 – Layer SinkPAD board, a common type, consists of a copper circuit layer, a dielectric (non – conducting) layer, and a metal core/pedestal which is usually copper. It belongs to single – sided SinkPAD PCB and DTP (Direct Thermal Path) board, and is the most popular and cost – effective stack – up option with the fastest lead time.

Sinkpad Copper Based PCB: Everything You Need to Know

Why Use Sinkpad Copper Based PCB?

Sinkpad copper based PCBs are used for several important reasons. After lamination, the electronics connection is on the trace layer, and the direct thermal conducting PAD comes from the copper core. The trace PAD on the trace layer is in the sink area of the copper core, which gives it the name “SinkPAD board”. This design allows for efficient thermoelectric separation.

These PCBs can reach a thermal conductivity of 400W/m.K. This high thermal conductivity is crucial in applications where heat dissipation is a major concern, such as in high – power LED lighting, power electronics, and other electronic devices that generate a significant amount of heat. By effectively dissipating heat, sinkpad copper based PCBs can improve the performance and reliability of electronic components and extend their lifespan.

Factors Affect the Price of Sinkpad MCPCB

  • Material type (aluminum vs. copper)

The choice of material has a significant impact on the price of sinkpad MCPCB. Copper is generally more expensive than aluminum. Copper has excellent thermal conductivity, which is one of the key advantages for sinkpad PCBs as it helps in better heat dissipation. However, the higher cost of copper raw materials and the more complex processing requirements contribute to the increased price.

Aluminum, on the other hand, is a more cost – effective option. It has relatively good thermal conductivity and is lighter in weight. But its thermal performance is not as good as copper. When the application requires high – end thermal performance, copper is often the preferred choice, but it comes at a higher price.

Sinkpad Copper Based PCB: Everything You Need to Know
  • Board size and thickness

The size and thickness of the sinkpad copper based PCB also play a role in determining the price. Larger boards require more raw materials, such as copper and dielectric materials. Additionally, the manufacturing process for larger boards may be more complex, as it requires more precise alignment and processing steps.

Thicker boards also add to the cost. Thicker copper cores or additional layers of materials increase the material cost. Moreover, thicker boards may require more advanced manufacturing techniques to ensure proper electrical and thermal performance, which can drive up the production cost.

  • Layer structure

The layer structure of the sinkpad PCB is another important factor. A more complex layer structure, such as multi – layer sinkpad PCBs, is more expensive than single – layer ones. Multi – layer PCBs require more manufacturing steps, including additional lamination processes, drilling for vias to connect different layers, and more precise alignment of the layers.

Each additional layer adds to the complexity and cost of the manufacturing process. For example, a 1 – Layer SinkPAD board is the simplest and most cost – effective option, while a PCB with multiple trace layers and copper core layers will be significantly more expensive.

  • Order quantity

Order quantity has a direct impact on the price of sinkpad copper based PCBs. When the order quantity is large, the per – unit cost usually decreases. This is because manufacturers can take advantage of economies of scale. They can purchase raw materials in bulk at a lower cost, optimize their production processes, and reduce setup costs per unit.

For small – quantity orders, the fixed costs associated with setting up the production line, such as tooling costs and programming costs, are spread over a smaller number of units. As a result, the per – unit price is higher. So, customers who need a large number of sinkpad PCBs can often negotiate a better price per unit.

  • Custom thermal pad design

Custom thermal pad designs can also increase the price of sinkpad copper based PCBs. Standard thermal pad designs are more cost – effective because they can be produced using existing manufacturing processes and tools. However, if a customer requires a custom thermal pad design, it may involve additional engineering work, such as designing new masks, adjusting the manufacturing process, and conducting additional testing.

Sinkpad Copper Based PCB: Everything You Need to Know

Custom designs may also require special materials or manufacturing techniques to meet the specific thermal requirements. All these additional steps and requirements add to the overall cost of the PCB.

Sinkpad Copper Based PCB Applications

Sinkpad copper based PCBs have several common uses in the electronics industry:

  • Thermoelectric separation applications:

Since the trace layer of SinkPAD boards is usually on the top side, they belong to single – sided SinkPAD PCBs and Direct Thermal Path (DTP) boards. This makes them suitable for applications where thermoelectric separation is required. For example, the SinkPad board provides excellent heat transfer from the LED to the base metal (copper) plate while maintaining excellent electrical isolation.

  • High – power LED applications:

1 – Layer copper base SinkPad PCB: It can be used with surface mount and chip & wire components. The thermal PAD of the LED touches the convexity of the copper core/pedestal directly, achieving a thermal conductivity of 400W/m.K. The pad of the LED touches the copper base directly, allowing the heat generated by the LED to be dissipated quickly into the air or a heatsink, achieving the best heat dissipation and conduction.

2 – Layers copper base SinkPad PCB: It can also be used with surface mount and chip & wire components. Similar to the 1 – layer version, the thermal PAD of the LED touches the convexity of the copper core/pedestal directly, with a thermal conductivity of 400W/m.K.

In general, sinkpad copper based PCBs are used to provide superior thermal performance for medium – to high – power LEDs and other chips/components.

How Does A SinkPAD board Differ From A Traditional PCB?

A SinkPAD board is a special type of metal core PCB. In a SinkPAD board, the thermal conductive PAD is the convexity area of the copper core/pedestal, allowing the thermal PAD of the LED to touch the convexity area of the metal core directly. This enables the heat of the LED to be dissipated into the air much faster and more efficiently than a conventional PCB.

The SinkPad provides excellent heat transfer from the LED to the metal base plate/pedestal while maintaining excellent electrical isolation. The base copper base gives the board substrate mechanical integrity, distributes and transfers the heat to a heat sink, mounting surface, or directly to the ambient air.

In contrast, traditional PCBs do not have this direct thermal path feature. The heating of the LED in a SinkPAD board conducts directly into the copper core, which is different from the traditional thermal path. Due to this, a SinkPAD board can offer superior thermal performance for medium – to high – power LEDs or other chips/components.

How to Design a SinkPAD Board?

When designing a SinkPAD board, the following points need attention:

1. Panel layout design

If the board outline is not square or rectangle, the outline has to be made via CNC routing or Die – punching. While designing the panel layout, at least 2mm space between the edge of the SinkPAD board (SinkPAD PCB) should be kept in order for routing or Die – punching.

2. Routing and punching

Several layers of SinkPAD PCB will be routed together to save time. But for punching, there is only one layer of SinkPAD board (SinkPAD PCB) each time. Die – punching will be used only when there are big volume orders as the cost of die – punching tooling is higher compared with other ways.

Moreover, in the lamination process (laminate & align board before hot process lamination), after specific steps, the electronics connection will be on the trace layer and the direct thermal conducting PAD comes from the copper core. The trace PAD on the trace layer seems in the sink area of the copper core, which is how the SinkPAD board gets its name. And because the electronic – related function is on the trace layer and thermal conduction is on the copper core, they are separated from each other, so it is also named a Thermoelectric separation circuit board.

Your Trust Sinkpad PCB Supplier – Best Technology

Best Technology is a reliable supplier of sinkpad PCBs. We offer high – quality SinkPAD boards with excellent thermal performance. Our products are designed and manufactured using advanced techniques to ensure precise separation of the copper core and trace layers, resulting in efficient thermoelectric separation.

Best Technology can provide various types of sinkpad PCBs, including 1 Layer SinkPAD boards, 2 layers sinkpad MCPCB and multi-layer sinkpad MCPCB, to meet different customer requirements. We also have the ability to handle custom designs, whether it’s a custom thermal pad design or a specific layer structure. With their expertise and experience in the field, customers can trust Best Technology to deliver high – quality sinkpad copper based PCBs at a reasonable price.

Frequently Asked Questions

1. What is a double – sided SinkPAD board?

A double – sided SinkPAD board consists of at least one layer of circuit layer on both the top and bottom sides of the SinkPAD board, a dielectric (non – conducting) layer, and a metal core/pedestal which is normally copper. More components can be placed on this type of board, but engineers need to consider heat conduction.

2. What are the components of a 1 – layer SinkPAD board?

A 1 – layer SinkPAD board consists of a copper circuit layer, a dielectric (non – conducting) layer, and a metal core/pedestal which is usually copper. It belongs to single – sided SinkPAD PCB and DTP board and is the most popular and cost – effective option with the fastest lead time.

3. How is a 2 – layer SinkPAD board different from a 1 – layer one?

A 2 – layer SinkPAD board has two layers of circuit layer on the same side, along with a dielectric layer and a copper metal core/pedestal. It also belongs to single – sided SinkPAD PCB and DTP board. The main difference is that more traces can be placed on a 2 – layer SinkPAD board compared to a 1 – layer one.

4. What defines a multi – layer SinkPAD board?

Multi – layer SinkPAD refers to a metal core board that has more than 2 layers of trace circuits, either on the same side or on both the top and bottom sides, and has a direct thermal path (PAD). Examples include 4L SinkPAD board or 4L SinkPAD double – sided board.

5. What is the first step in the SinkPAD board manufacturing process?

The first step in the SinkPAD board manufacturing process is to prepare the manufacturing files. This involves separating the copper core and trace from one Gerber layer into two different layers. One layer will have only the trace without the center heatsink PAD of the LED (trace layer), and the other layer will have only the heatsink PAD (copper core layer).

You may also like

How to improve the gap between the convexity and LED pad?
Saturday, July 11th, 2020

About the SinkPad copper core PCB, all is known that convexity is very important, the height of convexity is about 0.2mm-0.25mm.

We need to know whatñ€ℱs the reasons caused the gap between the convexity and LED pad is big.

  1. We make the copper core with convexity firstly, then make the circuit/panel board (FR4PCB/BT PCB) and finally do the lamination for cooper core and circuit board.
  2. The tolerance for convexity is +/-0.05mm-0.075mm.
  3. The tolerance for circuit/panel board is +/-0.13mm.

If we do negative tolerance for convexity and positive tolerance for circuit/panel board, then it will cause the gap very big.

See below picture and details.

For example, the size of convexity is 0.5mm, after negative tolerance -0.075mm, it will be 0.425mm and each side will be 0.0375mm smaller.

For the circuit/panel board, the gap between convexity is 0.2mm, after positive tolerance +0.13mm, it will be 0.33mm and each side will be 0.065mm bigger.

So finally, the gap will be 0.2mm+0.0375+0.065mm=0.3025mm. It is about 50% bigger than original size.

sinkpad pcb
sinkpad pcb
sinkpad pcb
Big gap between convexity and LED pad

How to improve that problem?

  1. Making the copper core with convexity according to design.
  2. Measuring the dimension of convexity before making the circuit/panel board, then making the circuit/panel board according to the convexity dimension with compensation design.
  3. Do Positive tolerance for convexity and negative tolerance for circuit/panel board, the gap will be much more smaller.

For example, the size of convexity is 0.5mm, after negative tolerance +0.075mm, it will be 0.575mm and each side will be 0.0375mm bigger

For the circuit/panel board, the gap between convexity is 0.2mm, after positive tolerance -0.13mm, it will be 0.07mm and each side will be 0.065mm smaller.

So finally, the gap will be 0.2mm-0.0375-0.065mm=0.0975mm. It is about 50% smaller than original size.

dtp pcb
dtp pcb
DTP PCB
Good gap between convexity and LED pad

For more information about SinkPad PCB, please click

https://www.bestpcbs.com/products/multi-layer-sinkpad-board.htm

You may also like

In order to reduce the cost, can SinkPad PCB use aluminum base instead copper base for heat dissipation?
Wednesday, June 24th, 2020

SinkPad PCB is a type of Copper base PCB used in thermoelectric separation application. It generally used for high power LED, the pad of LED touch the copper base directly, so that the heat generated by LED will dissipate quickly, which can achieve the best heat dissipation and conduction.

sinkpad gerber
sinkpad gerber
sinkpad pcb
sinkpad pcb

In another words, it is a technology that require to increase the path of the LED pad to the copper base to accelerate the heat emission from the base material. The copper base is vital while it also cost higher.

Then in order to lower cost, can SinkPad PCB use aluminum base instead copper base for heat dissipation?

The answer is NO. As you can see the below manufacturing steps, the SinkPad will etch the copper base into convex platform with Copper Etching Solution, then hollow out the Double Layer FR4 PCB, and do lamination with the convex platform.

sinkpad pcb manufacturing steps
sinkpad pcb manufacturing steps

However, regarding of current technical conditions, since aluminum or aluminum alloy cannot directly react with acid, the reaction process is too complex and difficult to control, which will increase the difficulty of etching the LED pad platform. Considering the scrap rate, the process of etching LED pad platform with aluminum is more complex and the overall cost is higher.

You may also like

What is SinkPad PCB?
Wednesday, June 17th, 2020

SinkPad PCB, also called Heat Sink or DTP (direct thermal path) PCB, it is a type of Copper base PCB used in thermoelectric separation application. It generally used for high power LED, the pad of LED touch the copper base directly, so that the heat generated by LED will dissipate quickly, which can achieve the best heat dissipation and conduction.

SinkPad PCB
SinkPad PCB

Thermoelectric separation technology is based on the higher heat dissipation requirements of high power electronic products, which needs to meet two basic conditions:

1.LED pad touches the base substrate directly.

It means we need to increase the path of the LED pad to the base substrate to accelerate the heat emission from the base material.

Two layers SinkPad PCB Stack up
Two layers SinkPad PCB Stack up

2.Higher heat dissipation substrate materials

Copper has a thermal conductivity of 401W/m·K, while aluminum has a thermal conductivity of 237W/m·K. Obviously, copper has better thermal conductivity because of its high density, high mass. Therefore, a SinkPad PCB usually means a SinkPad copper base PCB.

You may also like