PCB manufacturing PCB manufacturing
Home > Blog

Let you know about PCB copper layer thickness

August 16th, 2024

In the printed circuit board industry, the most common way to express the copper layer thickness on a PCB is in ounces (oz). 1oz means 1oz of copper evenly covers an area of 1 square foot, which is about 1.4mil. It uses the weight of the tissue area to express the average thickness of the copper foil. Expressed in terms of formula, 1oz=28.35g/FT2 (FT2 is square feet, 1 square foot = 0.09290304 square meters).

What is the standard thickness of a copper layer on a PCB?

In the manufacture of printed circuit boards (PCBs), the thickness of the copper layer is an important parameter that directly affects the electrical performance and reliability of the circuit board. Depending on the application requirements, the thickness of the copper layer can vary within a certain range. Generally speaking, the conventional copper layer thickness is between 1-35μm, with 35μm being the most commonly used thickness. For some applications with high reliability requirements, the copper layer thickness may reach more than 50μm.

The selection of the thickness of the copper layer is a decision-making process that takes into account a variety of factors, including the conductivity, heat dissipation, mechanical strength, cost and manufacturing difficulty of the circuit board. A larger copper thickness can reduce resistance and improve the conductivity and heat dissipation of the circuit board, but it will also increase material costs and production difficulties. Therefore, when designing PCB boards, engineers need to select a suitable copper thickness standard range based on specific application scenarios and design requirements to ensure the performance and reliability of the circuit board.

1oz copper thickness in mm = 0.035mm

0.5 oz copper thickness in mm = 0.0175mm

1.5 oz copper thickness in mils = 0.0525mm

2 oz copper thickness in mils =  0.07mm‌

How thick is PCB copper after plating?

PCB printed circuit boards are usually bonded to glass epoxy substrates with a layer of copper foil, usually 18, 35, 55 and 70 microns thick. The most commonly used copper foil is 35 microns thick.

The copper foil used by PCB manufacturers is generally 35~50 microns thick, and some are thinner than this, such as 10 microns, 18 microns, and thicker such as 70 microns. The thickness of the composite copper foil on a 1~3 mm thick substrate is about 35 microns. The thickness of the composite copper foil on a substrate with a thickness of less than 1MM is about 18 microns, and the thickness of the composite copper foil on a substrate with a thickness of more than 5 mm is about 55 microns.

The copper layer thickness of PCB (printed circuit board) can be adjusted according to different needs and designs. Common copper layer thicknesses include 1oz (35μm), 2oz (70μm), 3oz (105μm), and other thicker options. For most applications, a copper layer thickness of 1oz is sufficient and suitable for general signal transmission. ‌For circuit boards that need to carry large currents, such as switching power supplies, a copper layer thickness of 2oz or higher is usually used. ‌In addition, there are some special cases where manufacturers provide extremely heavy copper up to 20 oz/ft2 (26.8 mils or 0.34 mm) to meet special needs. ‌

When choosing the thickness of the copper layer, factors such as the purpose of the circuit board and the magnitude of the signal voltage and current need to be considered. ‌For example, for circuit boards that require excessive current, a copper thickness of 70μm or 105μm may be used. ‌For thin laminates that require ultra-high density patterns, a copper thickness of 12μm may be used. ‌Therefore, the specific thickness of the PCB after copper plating is determined according to design requirements and specific applications.‌

How thick is 2 oz copper for PCB?

If 1 ounce (28.35 grams) of copper were flattened to evenly cover a surface area of 1 square foot (0.093 square meters), the resulting thickness would be 1.37mils (0.0348mm). A conversion chart for different units of measurement can be found below.

PCB copper layer thickness 

What is the difference between different copper thicknesses in PCB?

‌Copper is an excellent conductive material, and the thickness of the copper layer directly affects the conductive effect of the circuit board. ‌Thicker copper layers can provide lower resistance, reduce signal transmission losses, and are particularly suitable for high-frequency and high-speed digital circuits. ‌

During the operation of electronic equipment, good heat dissipation is a key factor in ensuring the performance and life of components. ‌Thicker copper layers can conduct and dissipate heat more effectively, preventing components from overheating. ‌

In high-power electronic devices, thicker copper layers can carry larger currents, avoiding burnout or performance degradation caused by excessive current.

Below is the conductivity corresponding to different copper thicknesses.

PCB copper layer thickness 

How thick is high current PCB copper?

In PCB design, copper thickness (also called copper thickness) is an important parameter, which directly affects the performance indicators of the circuit board such as current carrying capacity, heat dissipation and reliability. For PCBs that need to withstand high currents, such as high-power LED light strips, power circuit boards, high-power motor control boards or high-power inverter control boards, thicker copper layers are usually used to increase current carrying capacity.

PCB copper layer thickness 

Different uses have different copper foil thicknesses. Common 0.5oz, 1oz, and 2oz are mostly used in consumer and communication products. Thick copper products above 3oz are mostly used for high currents, such as high-voltage products and power boards.

The thickness of copper foil (track width) will affect the current size. Although there is a formula that can directly calculate the maximum current carrying capacity of copper foil, it is not so simple when actually designing the circuit. Therefore, the safety factor should be fully considered during the design.

How thick is the copper in a flex PCB?

The thickness of copper foil in flexible PCB is generally 18μm, 35μm, 55μm and 70μm. These thickness specifications are suitable for different types of circuit board requirements, among which 35μm is the most commonly used copper foil thickness.

PCB copper layer thickness 

For flexible PCB, the choice of copper foil thickness depends on the specific purpose of the circuit board and the size of the signal voltage and current. For example, for PCBs that require excessive current, some parts will use 70μm copper thickness, while for signal transmission, 1oz (35μm) thickness is usually sufficient. In addition, for substrates of different thicknesses, the thickness of copper foil is also different. For example, the thickness of the composite copper foil on a 1mm thick substrate is about 18μm, and on a substrate thicker than 5mm, the thickness of the composite copper foil is about 55μm.

Conclusion:

PCBs for different usage scenarios correspond to different thicknesses of copper, and its thickness directly affects the conductive effect of the circuit board. If the copper layer is too thin, the conductivity may decrease, resulting in signal transmission attenuation or current instability. If the copper layer is too thick, although the conductivity will be very good, it will increase the cost and weight of the circuit board and easily lead to serious glue flow. In PCB manufacturing, it is necessary to select the appropriate copper thickness according to the design requirements and actual applications of the circuit board to achieve the best conductive effect.

BEST Technology is a professional PCB circuit board manufacturer with a large area of site and equipped with useful and experienced production personnel. Corresponding to different thicknesses of copper, we have rich production and processing experience. We can meet the requirements of any circuit board copper layer thickness.‌

What is MCPCB prototype circuit board?

August 16th, 2024

What is MCPCB prototype circuit board?

MCPCB prototype refers to the manufacture of a small number of sample PCB boards before formal mass production, and actual welding and testing to verify the correctness, performance and reliability of the design. This process is usually called “proofing” or “prototype production”. The main purpose of MCPCB prototype is to conduct trial production before mass production of circuit boards to ensure the feasibility of the design and the quality of the product. Through MCPCB prototype, design engineers can find and solve potential problems before actual production, thereby ensuring the performance and reliability of the final product.

What is MCPCB prototype circuit board?

Why do we need prototype model?

MCPCB prototypes are to verify the correctness and performance of the design and ensure the quality and reliability of the final product. ‌By making MCPCB prototypes, developers can better optimize product designs, discover potential problems and deficiencies through testing, and make targeted improvements and optimizations.
‌1. Verify the correctness of the design: By making sample boards for testing, design problems can be found, such as errors in component layout and line connection. By discovering problems in advance and making modifications, problems can be avoided during mass production, saving time and cost. ‌
‌2. Evaluate the performance of the circuit board: Through proofing tests, the working condition of the circuit board, signal transmission quality, power supply stability and other aspects can be checked to ensure the reliability and stability of the final product. ‌
‌3. Improve the manufacturing process: During the sample board production process, manufacturing problems can be found, such as poor pads and unreliable line connections, so as to adjust the manufacturing process and workflow in time to improve the overall manufacturing quality and efficiency.

What files are needed to MCPCB prototype ?

‌1. Gerber file: contains the layer information of PCB, such as pads, connections, jacks, etc., and is the basic file for PCB manufacturing.

  1. BOM (Bill of Materials) list: lists the detailed information of all components on the PCB, including component model, quantity, etc., for procurement and assembly.

‌3. Drilling file: contains the location and size information of all holes punched on the PCB, which is very important for the manufacturer to perform drilling processing.

‌4. Circuit diagram: provides the connection method of the design, which is very important for checking whether the connection of the design is correct.

‌5. Special layer file: If the design requires special processes, such as impedance control or metallized hole wall, the corresponding special layer file needs to be provided. ‌

★★Detailed explanation of the role and importance of each file:
★★Installation instructions and precautions: Provide detailed installation instructions, including information such as component direction and polarity, as well as the processing methods of special components
★★Material and thickness instructions: Specify the substrate material, plate thickness, copper foil thickness and other information used to ensure the accuracy of the production process.

What files are needed to MCPCB prototype ?

Prototype pcb manufacturing process

  1. Design phase:

Draw schematics: Use PCB design software (such as Altium Designer, Eagle, KiCad, etc.) to draw circuit schematics and perform error checking.

Generate PCB files: Generate PCB files based on schematics and component libraries, and set parameters such as number of layers, size, line width, and vias.

Export Gerber files and drill files: Gerber files describe PCB layers, and drill files describe via positions and sizes. These files are the main files required by board manufacturers.

  1. Production phase:

Place an order to make PCBs: Package and compress Gerber files and drill files, upload them to the website or software of the board manufacturer, and select appropriate parameters and quantities to place an order and pay.

Wait for delivery: The board manufacturer produces PCBs according to the order and sends them to customers by express delivery, which usually takes a few days to a week. ‌

  1. Subsequent processing (if SMT patch is required): ‌

Transform the schematic diagram and package library: Identify the component type and direction for the patch machine, and modify the schematic diagram and package library. ‌

Export SMT patch coordinate file and bill of materials (BOM): The SMT patch coordinate file describes the component position and angle, and the bill of materials describes the component type and quantity. ‌

  1. Order SMT patch: On the website or software of the board manufacturer, select whether SMT patch is required, and upload relevant files to place an order. ‌

Waiting for delivery: The patch manufacturer performs SMT patch according to the order and sends it to the customer by express delivery. ‌

Testing phase: Test with a flying probe tester to detect defects that affect functionality, such as open circuits and short circuits.

The difference between MCPCB prototype and copy board

The main differences between MCPCB prototypes and copy boards lie in the process flow, production cycle, cost, and applicable scenarios.

  1. Different process flow: Proofing is produced according to the design documents, usually through preparation, board making, drilling, plug-in, welding, coating and other process flows, and finally form a sample consistent with the design documents. Copy board is to reverse design and produce the existing PCB board, generally only need to carry out two process flows of plate making and etching.
  2. Different production cycle: Proofing has a longer production cycle, generally it takes 1-2 weeks to produce samples, mainly because it needs to go through multiple process flows, and the manufacturer needs to carry out strict quality control. Copy board production cycle is relatively short, generally only 3-5 days to produce a copy of the same effect as the original board.
  3. Different cost: Proofing costs are higher, because proofing requires multiple sample production and testing, plus the production cycle is longer, manufacturers need to invest more manpower and material resources. ‌
    ‌Copy board costs less, because it only needs to be reverse designed and produced once, and the production cycle is short, so the cost is lower. ‌
  4. Different applicable scenarios: ‌
    ‌Proofing is suitable for scenarios where the performance and reliability of PCB boards need to be verified and tested, such as the research and development stage of new products, verification of new technologies, etc. ‌
    ‌Copy board is suitable for scenarios where a large number of PCB boards consistent with the original need to be produced quickly, such as mass production, repair and replacement, etc. ‌

How much does a MCPCB prototype cost?

  1. Basic costs: including manufacturing costs, material costs and labor costs. Manufacturing costs include depreciation of production equipment and equipment maintenance costs; material costs mainly refer to the costs of PCB boards, and the prices of different types of boards vary greatly; labor costs include the labor costs of design, board making, welding and other processes. ‌
  2. Process costs: calculated according to the customer’s special requirements for PCB boards, such as multi-layer boards, blind holes, buried holes, impedance control and other advanced processes will increase costs. The more layers, the higher the manufacturing difficulty and cost; the processing of special holes requires more sophisticated equipment and technology, so it will increase costs; impedance control In order to meet the stability of signal transmission, impedance control of PCB boards is sometimes required, which will also increase certain costs.
  3. Logistics costs: mainly include express delivery costs and insurance costs. It is calculated based on the number and weight of PCB boards, as well as the distance between the place of shipment and the place of receipt. In order to ensure the safety of goods during transportation, customers can choose to purchase insurance, and this part of the cost will also be added to the proofing price.
  4. Other costs: including taxes, surcharges, etc. According to the tax laws of different countries and regions, customers may need to pay corresponding taxes; if customers require expedited services or special services, additional fees may be incurred.

Why do prototypes cost so much?

‌1. Material cost‌: Multilayer PCBs require more substrates and prepregs, and the quality of these materials directly affects the functionality and reliability of the circuit. Although using high TG (glass transition temperature) materials will increase costs, it can improve the stability of PCBs in high temperature environments. ‌
‌2. Manufacturing process‌: The production process of multilayer PCBs is more complicated, involving multiple pressing, drilling, and copper plating processes. ‌These steps require sophisticated equipment and technology, which pushes up production costs. ‌
‌3. Design complexity‌: The design of multilayer PCBs is usually more complex, involving more circuits and more compact spatial layout. Designers need to invest more time and energy in design optimization to ensure signal integrity and electromagnetic compatibility. ‌
‌4. Testing and verification‌: To ensure that the performance of multilayer PCBs meets the standards, rigorous testing and verification are required, including electrical testing, thermal stress testing, etc., which adds additional costs. ‌
‌5. Quantity and delivery time‌: The number of samples and the delivery time required by the customer will also affect the price. ‌Urgent orders often require additional expedited fees. ‌
‌6. Documentation and component research: The quantity and quality of documentation that may need to be completed to accompany the prototype build, and the manufacturer must update or create the necessary documentation to proceed with the build. Components in the design may need to be improved, and component engineers will need to spend time researching suitable alternatives. ‌
‌7. Engineering analysis: The design may be more conceptual rather than production-ready, requiring more engineering analysis to ensure that potential manufacturing errors have been corrected. ‌
‌8. Design and debug: It is often necessary to include more elements, such as design for assembly, design for test, and design for debug. Debugging design is essential in prototyping.

Understanding Press-Fit Technology in PCB Surface Mount Technology (SMT)

August 16th, 2024

What is Press-Fit Technology?

Press-Fit technology is a solderless connection method used to install connectors, pins, or other components into a PCB. The components have specially designed pins that are slightly larger than the PCB’s plated through-holes (PTH). These pins are pressed into the holes with sufficient force, creating a secure and reliable mechanical and electrical connection through compression.

The key feature of this technology is that it eliminates the need for soldering. Instead of using heat and solder to establish the connection, the mechanical force ensures that the contact between the pin and the wall of the hole is firm enough to create a stable electrical pathway. This method offers high durability and is especially useful in environments where temperature fluctuations, vibrations, or mechanical stress are present.

Understanding Press-Fit Technology in PCB Surface Mount Technology (SMT)
Understanding Press-Fit Technology in PCB Surface Mount Technology (SMT)
Understanding Press-Fit Technology in PCB Surface Mount Technology (SMT)

Advantages of Press-Fit Technology in SMT

1. No Heat Damage

Traditional soldering processes expose components to high temperatures, which can sometimes damage sensitive parts. Press-Fit technology avoids this by using a mechanical press to insert the pins, preserving the integrity of temperature-sensitive components.

2. High Reliability

The press-fit connection creates a strong and stable bond, even in challenging environments such as automotive and industrial applications. The mechanical compression between the pin and the hole ensures excellent electrical contact without the risk of thermal cycling or solder joint cracking over time.

3. Maintenance and Repair

One of the significant advantages of Press-Fit technology is its ease of repair. Since the connections are mechanical rather than soldered, they can be easily removed or replaced if needed without damaging the PCB or the component.

4. Environmental Benefits

By eliminating the need for solder and flux, press-fit technology is also a more environmentally friendly solution. This method reduces the use of hazardous materials and can help meet stricter environmental standards

Application of Press-Fit in SMT

In our SMT assembly process, Press-Fit technology is typically applied to connectors and other components that require robust, high-density connections. This technology is particularly popular in automotive electronics, telecom infrastructure, medical devices, and other high-reliability sectors.

Press-Fit connectors are also ideal for multi-layer PCBs, where a strong and stable connection is essential across various layers of circuitry. By using this technology, we ensure that our products meet the highest standards of performance and durability, especially in critical applications where failure is not an option.

Press-Fit technology is a critical component of modern SMT assembly, providing a highly reliable, solderfree connection method. Its mechanical strength, ease of maintenance, and suitability for harsh environments make it a preferred choice for various high-demand applications. As electronics continue to advance, Press-Fit technology offers a robust and environmentally friendly solution to meet the needs of the industry

Drone Circuit Board: What It Is and How to Make a Drone PCB Board?

August 16th, 2024

What is a Drone Circuit Board?

A drone circuit board refers to the electronic component board installed in a drone that controls and manages its various functions. It serves as the core control system of the drone, similar to how a brain functions in the human body. The drone circuit board controls all operations, including flight, photography, and video recording. It is the central system that coordinates all activities.

Depending on different functions and application scenarios, drone circuit boards can be classified into various types, such as flight control boards, video transmission boards, and power control boards. Among these, the flight control board can be considered a type of drone circuit board but is not equivalent to it. The flight control board mainly controls parameters such as flight direction, altitude, and speed, and adjusts the drone’s posture to ensure stable flight. The drone circuit board, however, not only controls flight but can also implement auxiliary functions such as GPS positioning and image transmission.

What Board is Used in Drones?

In drone design, the two most common types of circuit boards are rigid-flex boards and traditional PCB boards. Rigid-Flex PCB is a hybrid type of PCB that combines rigid and flexible circuit boards. It allows the board to bend and fold in tight spaces, which is particularly useful for compact drones that require a highly integrated design. Moreover, rigid-flex boards are lightweight and thin, which is advantageous for drone designers looking to enhance flight time and stability.

Traditional PCB Boards are another common type of circuit board used in drone design. These boards have strong mechanical strength, making them suitable for the core control units in drones, such as flight control boards and ESC boards (Electronic Speed Controllers).

Below are the main types of circuit boards commonly found in drones:

Control Circuit Board

The control circuit board is one of the most important boards in a drone. It typically consists of the main control chip, sensors, and electronic speed controllers (ESC). The main control chip acts as the brain of the drone, receiving wireless signals and controlling the flight posture and movement based on user commands. Sensors can detect the drone’s position and motion in real-time, ensuring stable flight control. The ESC adjusts the motor speed and direction, which directly impacts the drone’s flight.

Power Supply Circuit Board

The power supply circuit board is responsible for providing power to the drone, ensuring proper voltage and current. It must prevent issues like overcurrent, overvoltage, and overheating to maintain the drone’s performance.

Navigation Circuit Board

The navigation circuit board determines the drone’s position and direction, with the GPS module as the core component. GPS helps obtain satellite signals, calculating important information such as latitude, longitude, and altitude, to ensure precise navigation and positioning. The board may also include other sensors like barometers, gyroscopes, and accelerometers to enhance navigation accuracy.

Communication Circuit Board

The communication circuit board typically includes WiFi, Bluetooth, and 4G/5G modules, which allow the drone to connect with ground control stations or user devices for data transmission, remote control operations, and video streaming.

Why Use a Drone Circuit Board?

Besides the central chip, drone circuit boards serve many critical functions, such as power management and signal transmission. Let’s take a closer look at their functionality:

Power Management

The power management chip on a drone circuit board controls and regulates the power supply. Unlike regular circuit boards, the power management module in drones must be efficient, low-power, and lightweight. Since drones often need to fly for hours, improper design of the power management module can severely impact flight time and energy utilization.

Collecting data

The sensor chip on the drone circuit board is responsible for collecting data, such as GPS location, barometric pressure, and posture. The sensor chip processes data from wireless sensors and transmits it to the control chip for decision-making.

Control the drone

The control chip is the most vital part of the drone circuit board, managing and coordinating all aspects of the drone’s operation, including GPS navigation, servos, and motors. The microprocessor in the control chip uses algorithms to control flight while processing real-time sensor data.

Data Transmission

When capturing aerial photos or videos, the drone needs to send the recorded data to ground devices. The data transmission chip on the drone circuit board ensures that this information is transmitted to ground equipment. Many drones also support wireless network connections for seamless communication.

How to Make a Drone PCB?

To make a drone PCB, you’ll need to prepare the following materials:

  • STM32F405RGT6 microcontroller, which is stable and suitable for various drone applications.
  • 2.4G CC2500 wireless module based on the UART protocol for data communication with the remote control.
  • Sensors like accelerometers, gyroscopes, magnetometers, barometers, GPS, etc., to provide sensor fusion for precise drone control.
  • Power Module
  • Other components including resistors, capacitors, diodes, voltage regulators, and other basic circuit components.

Here is the way to create the drone PCB step by step:

1. Design

You can use PCB software to design the schematic and PCB layout, determining key parameters like circuit connections and component placement.

2. Printing and Etching

Print the designed circuit board pattern onto transparent stickers and attach them to copper sheets. After etching and removing the stickers, the circuit board will be ready.

3. Soldering

Solder the components onto the circuit board. It’s essential to leave adequate pads for soldering during the design phase.

4. Testing

Test the soldered circuit board to ensure normal functioning of the circuits.

What Should We Consider When Designing a Drone PCB?

  • Make sure enough power, ground, and data lines are allocated to each component to avoid signal interference and noise.
  • Take measures to protect components from static electricity during soldering.
  • Write clear and standardized comments in your program for easier modifications and debugging later.
  • Double-check that the board’s connections are in the correct order to prevent damage to the control board.

Is a Fuse Board the Same As a Distribution Board?

No, a fuse board and a distribution board serve different purposes in a drone’s electrical system.

Fuse board is designed to protect your components from power surges or short circuits. It contains fuses that blow if too much current flows through them, cutting off power to prevent damage.

Distribution board is simply distributes power from the battery to different components of the drone, such as the ESCs and flight controller. It doesn’t have the protective features of a fuse board.

In some designs, both can be combined into one board, but their functions remain distinct.

How can I Increase my Drone Power?

Increasing your drone’s power can improve performance, allowing it to carry more weight or fly faster. You can use below ways to increase the power:

  • Upgrade motors
  • Increase battery capacity
  • Use better propellers
  • Optimize power distribution

What is the full form of MCPCB

August 16th, 2024

What is the full form of MCPCB

mcpcb full form is metal core printed circuit board
Attach the original printed circuit board to another metal with better heat conduction effect to improve the heat dissipation at the circuit board level. Metal-based PCBs usually consist of three layers: circuit layer (copper foil layer), thermal conductive insulation layer and metal base layer.

What is MCPCB

Metal Core PCB is a printed circuit board whose substrate uses metal material as a support layer or heat dissipation layer, usually an aluminum substrate or a copper substrate. It has excellent electrical conductivity and thermal conductivity.
Metal Core PCB is usually composed of a metal substrate, an adhesive and copper foil. It is characterized by high reliability, good heat dissipation, and is suitable for high-speed transmission and high-frequency circuits.

What is MCPCB

What is MCPCB

What is mcpcb led

Metal-based LED lamps are LED lighting fixtures that use metal-based circuit boards (MCPCBs) as light source boards. This type of circuit board, called aluminum-based copper-clad circuit boards (ALPCBs), has excellent thermal conductivity and high cost-effectiveness, and has rapidly become the first choice for light source boards of LED lighting fixtures since 2007. The basic structure of a metal-based circuit board includes a conductive layer (copper foil layer), an insulating heat dissipation layer, and a metal base layer (mostly aluminum or copper), which together provide good electrical insulation and heat dissipation.

In LED lamps, it can conduct heat quickly, which is very effective in dealing with the problem of high heat generation of LEDs. Aluminum substrates also support surface mount technology (SMT), which effectively handles heat diffusion in circuit design solutions, ensuring that LED lamps have better performance and longer service life

What is the thermal conductivity of Mcpcb?

The thermal conductivity of MCPCB ranges from 1.0-4W/mK, while high-performance MCPCB can reach 230W/mK.

What is the thermal conductivity of Mcpcb?

The thermal conductivity of MCPCB depends on its design and the materials used. ‌Generally speaking, the thermal conductivity of MCPCB is between 1.0-4W/mK, which can already meet the heat dissipation needs of most electronic devices. ‌However, for applications that require higher thermal conductivity, MCPCBs with thermal conductivity as high as 230W/mK have appeared on the market. This high-performance MCPCB uses special materials and designs to provide better heat dissipation. ‌

MCPCB material

  1. Aluminum substrate: Aluminum substrate is a metal-based copper-clad plate with good thermal conductivity and electrical insulation properties. It is usually composed of an aluminum alloy base layer and an insulating dielectric layer, and is suitable for electronic devices that require efficient heat dissipation, such as LED lighting and power supplies. Aluminum substrates can not only effectively conduct heat from the circuit board to the heat sink, but also have good mechanical strength and electromagnetic shielding effects.
  2. Copper substrate: Copper substrates are known for their excellent electrical conductivity and can provide low-resistance paths, which helps improve circuit performance. Copper’s thermal expansion coefficient is similar to that of many semiconductor materials, which helps reduce thermal stress and increase component reliability.
  3. Tungsten substrate: Tungsten substrate has good high-temperature stability and is suitable for electronic devices in high-temperature environments. Tungsten has a low thermal expansion coefficient, which helps maintain the dimensional stability of components at different temperatures, and is suitable for high-performance electronic devices that require compact designs.
  4. Nickel substrate: Nickel substrate has good magnetic properties and is suitable for the application of magnetic components. Nickel substrates exhibit excellent corrosion resistance and mechanical strength under certain environments, and are suitable for electronic devices in some special environments. ‌
  5. Stainless steel substrate: Stainless steel substrate is well-known for its excellent corrosion resistance and is suitable for electronic devices in some special environments. The durability and stability of stainless steel substrate make it an ideal choice for some harsh environments.

Advantages of MCPCB

  1. High thermal conductivity: The thermal conductivity of metal substrate PCB is much better than that of traditional plastic substrates such as FR4. It can effectively conduct the heat generated by components, reduce the operating temperature of components, and improve the reliability and life of circuit boards.
  2. Good thermal stability: Metal substrate PCB can maintain good dimensional stability and electrical performance in high temperature environments, and is suitable for high temperature working environments.
  3. High strength and rigidity: Metal substrate PCB has high mechanical strength and rigidity, is not easy to deform and break, and can withstand large external forces and vibrations.
  4. Excellent electrical insulation performance: Through the special insulation layer design, good electrical insulation performance is guaranteed to avoid electrical short circuits between components.
  5. Low impedance: The conductive layer of metal substrate PCB is made of metal material, which has low impedance, which is conducive to signal transmission and processing.
  6. Good processability: Metal substrate PCB can be processed by conventional mechanical processing methods such as drilling and cutting, which is convenient for the production of circuit boards with complex shapes and sizes. ‌
  7. Widely used: Aluminum substrates are widely used in audio equipment, computers, automobiles, lamps and lighting. Copper substrates are suitable for high-frequency circuits and areas with large changes in high and low temperatures.

Application of MCPCB

  1. Automotive electronics: The stability and reliability of metal-based PCBs make them an ideal choice in the automotive electronics field, ensuring the stable operation of automotive electronic systems.
  2. Medical devices: In medical devices, the high reliability and good electromagnetic compatibility of metal-based PCBs are essential to ensure the accuracy and safety of medical equipment.
  3. Industrial automation: Industrial automation equipment has high requirements for reliability and performance. The mechanical strength and high thermal conductivity of metal-based PCBs make them the preferred choice in the field of industrial automation.
  4. Communication base stations and radar systems: Communication base stations and radar systems need to process a large amount of data transmission and high-frequency signals. The excellent electrical properties and high-frequency characteristics of metal-based PCBs meet the needs of these applications.
  5. Antennas and filters: In the field of wireless communications, the electromagnetic shielding performance and stability of metal-based PCBs are essential to improving communication quality and reducing electromagnetic interference.
Application of MCPCB

How to make MCPCB

The process flow of metal-based PCB includes inner-layer circuit production, lamination, drilling, hole metallization, outer-layer dry film, outer-layer circuit, silk-screen printing, surface processing and post-processing. ‌

  1. Inner-layer circuit production: This step is mainly to produce the inner-layer circuit of the PCB circuit board, including cutting, pretreatment, lamination, exposure, DE (development, etching, film removal) and other processes, the purpose is to produce the inner-layer circuit of the PCB circuit board. ‌
  2. Lamination: Press the copper foil, prepreg and brown-treated inner-layer circuit board into a multi-layer board. This step is to press multiple inner-layer boards into one board. ‌
  3. Drilling: Use a drilling machine to drill holes of different diameters and sizes on the board according to customer requirements, so that the holes between the boards are convenient for subsequent processing of plug-ins, and can also help the board dissipate heat. ‌
  4. Hole metallization: Metallizing the non-conductor part on the hole wall can make the subsequent electroplating process more convenient. ‌This step is to plate copper in the hole so that the circuits on each layer of the board are conductive. ‌
  5. Outer layer dry film: The required circuit is exposed on the dry film through graphic transfer technology, in order to facilitate the subsequent process to make the circuit. ‌
  6. Outer layer circuit: The purpose is to plate the copper thickness to the thickness required by the customer and complete the circuit shape required by the customer. ‌
  7. Silk screen printing: The protective layer of the outer layer circuit is used to ensure the insulation, protective plate, and solder mask of the PCB. ‌
  8. Surface processing: Complete the processing according to the customer’s requirements, and test it to ensure the final quality audit. ‌Both THT and SMT parts are installed on the PCB using machinery and equipment. ‌
  9. Post-processing: Complete the processing according to the customer’s requirements, and test it to ensure the final quality audit.

Metal PCB Manufacturers

Welcome to our website! With over 18 years of experience in designing and manufacturing MCPCBs, we take pride in being your one-stop supplier. Our original factory spans 30,000㎡, and with a team of 229+ staff and advanced equipment, we achieve a daily peak production of up to 100k pieces.


As a trusted supplier, we hold certifications including UL, ISO13485, ISO9001, IATF16949 and SGS, enabling us to meet the high standards of clients across Europe, America, Israel, India, and so on. Our success is built on core values such as honesty, integrity, teamwork, appreciation, self-confidence, pragmatism, continuous learning, self-discipline, and fostering win-win cooperation. Experience reliability, efficiency, and quality with us. Explore our services and let us help you fulfill your MCPCB needs.

Metal PCB Manufacturers

Printed circuit board assembly metal core

The preparation processes of metal matrix composite materials include contact reaction method (CR method), mixed salt reaction method (LSM method), hot pressing preparation process, stirring casting method, semi-solid composite casting method, impregnation solidification method (MI technology) and centrifugal casting method.

  1. Contact reaction method (CR method) is to mix the matrix element or alloy powder and the strengthening element or alloy powder in a certain proportion, cold press into a prefabricated block with a certain density, and then immerse it in an alloy melt at a certain temperature. After the reaction, a fine strengthening phase is generated in the alloy melt, and after stirring and standing, it can be cast into various castings. This method has been used to prepare a variety of metal matrix composite materials, such as Al-based, Mg-based, Cu-based, Ti-based, Fe-based, Ni-based composite materials, showing excellent mechanical properties. ‌
  2. The mixed salt reaction method (LSM method) is to mix salts containing Ti and B, such as KBF4 and K2TiF6, and add them to high-temperature metal melt. The Ti and B in the salt are reduced by the metal under high temperature and react in the melt to form a reinforcing phase. After slag removal, it can be cast to obtain a reinforced metal matrix composite material. ‌
  3. The hot pressing preparation process is a solid phase composite process for preparing metal matrix composite materials by diffusion bonding continuous fibers and matrix alloys at a certain heating temperature and pressure.
  4. The stirring casting method is to add ceramic particles to the molten metal, and after uniform stirring, pour it into the mold to obtain products or secondary processing blanks. This method is easy to achieve mass production and has low cost, but the main disadvantage is that the combination of matrix metal and reinforcing particles is limited. ‌
  5. The semi-solid composite casting method is developed from the semi-solid casting method. Through strong stirring, the dendrite network skeleton is broken and the dispersed granular structure is retained, which improves wettability and promotes interface bonding. ‌
  6. The impregnation solidification method (MI technology) is a method of impregnating a pre-prepared reinforcement phase formed body with a high porosity into a molten matrix metal, allowing the matrix metal to penetrate the preform and then solidify it to prepare a composite material. ‌
  7. The centrifugal casting method is widely used in the casting of hollow parts. It forms a bimetallic layered composite material through a two-step casting method. This method is simple and has the advantages of low cost and high density of the casting, but the interface quality is not easy to control.

What problems can occur in the ceramic PCB etching process?

August 15th, 2024

Ceramic PCB etching is a process that removes copper from a ceramic PCB by chemical methods to leave only the required copper traces on the board. This allows the creation of conductive paths between the components on the ceramic PCB that make up the circuit. Etching is a key step in ceramic PCB manufacturing, which can make ceramic PCB manufacturing efficient and up to standard.

During the ceramic PCB etching process, the chemical etchant solution dissolves the unwanted copper on the ceramic PCB laminate, while the resist (usually a polymer film) protects the copper traces from being etched away. After the etching is completed, only the desired copper circuit pattern remains on the ceramic PCB.

What are the reasons for uneven etching?

The reasons for uneven etching mainly include insufficient etching solution concentration, ‌high or low temperature, ‌long or short time, ‌incomplete film stripping on the substrate surface, ‌residual film, ‌uneven thickness of copper plating on the board surface when copper is plated on the entire board, etc. ‌

Uneven etching is one of the problems often encountered in the ceramic PCB etching process, ‌and its reasons are diverse and complex. ‌First of all, the problem of etching solution is an important factor leading to uneven etching. ‌If the concentration of the etching solution is insufficient, or the temperature is too high or too low, or the etching time is too long or too short, uneven etching may occur. ‌These problems can be solved by adjusting the concentration of the etching solution, controlling the etching temperature within an appropriate range, and ensuring that the etching time is within a reasonable range.

In addition, improper surface treatment of the substrate is also one of the reasons for uneven etching. ‌If the film on the substrate surface is not completely removed, there is residual film, or the thickness of the copper plating layer on the board surface is uneven when the copper is plated on the entire board, the uniformity of etching will be affected. ‌Similarly, if the ink is stained on the transmission roller of the etching machine when the board surface is corrected or repaired with ink, uneven etching may also occur.

How to avoid uneven etching?

Optimize the design of the etching tank: ensure the uniform distribution of the etching solution in the etching tank, design a reasonable liquid flow path, and improve the fluidity and uniformity of the etching solution.

Control the etching time: Reasonably control the etching time, avoid too long or too short etching time, and ensure uniform etching.

Stabilize the concentration of etching solution: Regularly monitor and adjust the concentration of etching solution to ensure the chemical composition of etching solution is stable.

How does the residue problem affect the etching quality?

Impact on etching uniformity: The presence of residues and impurities may have a serious impact on the success of the etching process, especially at the micro-nano scale, these residues and impurities may affect the uniformity of etching, resulting in a decrease in etching quality. ‌

Affect the uniformity and stability of etching solution: Residues and impurities may affect the uniformity and stability of etching solution, thereby affecting the quality of etching process. Factors such as etching solution concentration, pressure strength, temperature, speed and environment are all key factors affecting etching quality, and the presence of residues may interfere with the normal function of these factors, resulting in a decrease in etching quality. ‌

Affect the etching performance and quality of metal materials: The type and microstructure of metal materials have a significant impact on the etching process and quality. Alloy materials containing different elements will form micro-corrosion cells during the corrosion process, affecting the dissolution rate and uniformity of the metal corrosion process. The presence of residues may aggravate this effect, resulting in a decrease in etching quality. ‌

Requires additional cleaning and processing steps: In order to remove the residue, additional cleaning and processing steps may be required, which may increase production costs and time. ‌In addition, if the residue is difficult to remove or detect, it may also affect the quality and performance of the final product.

How to avoid the problem of residue?

Use pure etching solution: Select high-purity etching solution to ensure the purity and chemical activity of the etching solution.

Increase cleaning steps: Use a multi-step cleaning process to completely remove the etching solution and etching products to ensure that the surface is clean and residue-free.

Optimize process control: Strictly control parameters such as temperature, time, and concentration during the etching process to ensure stable etching effects.

What problems will over-etching cause?

Over-etching of ceramic PCBs will cause a series of problems, including excessive circuit etching, local corrosion, galvanic corrosion, etc.

Excessive circuit etching: When the circuit design is too detailed and the copper foil used is thick, it may cause excessive circuit etching, resulting in abnormal copper foil peeling strength, thus affecting the normal function of the circuit.

Local corrosion: includes filiform corrosion, crevice corrosion, and pitting corrosion. These types of corrosion are usually caused by chemical reactions between oxygen, moisture in the air and copper, or by corrosion in these crevices due to residual materials, hardware, or areas under components on the PCB.

Galvanic corrosion: When two different metals are coupled in a corrosive electrolyte, galvanic corrosion, also known as bimetallic corrosion, occurs.

In summary, excessive etching of ceramic PCBs may not only cause abnormal circuit function, but also cause a variety of corrosion problems, thus affecting the overall performance and life of the circuit board.

How to avoid excessive etching?

Reasonably control the etching time: According to the specific process requirements, reasonably control the etching time to ensure that the etching depth is moderate.

Adjust the etching solution concentration: According to the etching requirements, adjust the etching solution concentration to control the etching rate.

Optimize process parameters: During the etching process, strictly control process parameters such as temperature and pressure to avoid excessive etching.

How does graphic distortion affect the etching effect?

The main causes of graphic distortion include poor photoresist graphics, uneven distribution of etching solution, and improper etching process control.

Poor photoresist pattern: During the photolithography process, the photoresist pattern is unclear and uneven, which will cause the circuit pattern to be distorted after etching.

Uneven distribution of etching liquid: The uneven distribution of etching liquid in the etching tank will lead to different etching rates in different areas, resulting in inconsistent line width and shape, and pattern distortion.

Improper control of etching process: Improper control of process parameters such as temperature, time, and concentration during etching will lead to unstable etching rate and pattern distortion.

How to avoid image distortion?

Improve the quality of photoresist patterns: Use high-quality photoresist to ensure clear and uniform photolithography patterns and improve pattern accuracy.

Optimize etching tank design: Design a reasonable etching tank to ensure uniform distribution of etching liquid in the tank and reduce pattern distortion.

Strictly control process parameters: During the etching process, strictly control process parameters such as temperature, time, and concentration to reduce pattern distortion.

There are many common problems in the etching process of ceramic PCBs. These problems can be effectively solved by reasonably controlling the etching time, adjusting the etching liquid concentration, and using high-precision equipment. As a professional ceramic circuit board manufacturer, BEST Technology has 18 years of experience in ceramic PCB production. It can provide high-quality products and comprehensive technical support to ensure the success of the project and the reliable operation of the equipment.

How to Make SMT? What is SMT Process?

August 15th, 2024

What is the SMT?

Surface Mount Technology (SMT) is a production technique used to attach electronic components directly onto the surface of a printed circuit board (PCB). This method enables automated manufacturing to handle most of the assembly process needed to create a functioning board. Components attached in this way are known as surface-mount devices (SMDs). Unlike traditional methods, SMT does not involve inserting components through holes in the board. Instead, components are soldered directly onto the surface using reflow soldering.

Originally known as Planar Mounting, SMT was pioneered by IBM in the 1960s for small-scale computer production, replacing the earlier Through-Hole Technology. However, SMT didn’t gain widespread use until 1986, when surface-mounted components achieved 10% market penetration. By 1990, SMDs had become a dominant feature in most high-tech circuit card assemblies (CCAs).

How to Make SMT? What is SMT Process?

What is the process of SMT manufacturing?

The SMT manufacturing process can be divided into three main stages: solder paste printing, component placement, and reflow soldering. Due to the complexity of the process, each stage is further broken down as follows:

1. Component and PCB Preparation

This initial stage involves selecting surface-mount components (SMCs) and designing the PCB. The board typically features flat copper pads plated with silver, tin-lead, or gold, which are called solder pads. These pads do not have holes and are used to support the pins of components like chips and transistors.

Another crucial element is the stencil, which is aligned with the solder pads to define the placement of solder paste during the next stage. The PCB and all materials involved must be thoroughly inspected to ensure there are no defects before proceeding with production.

2. Solder Paste Printing

Solder paste printing is a critical phase in SMT production. A stencil and squeegee are used to apply solder paste at an angle of 45° to 60°. The solder paste itself is a combination of powdered metal solder and flux, which temporarily holds components in place and cleans the soldering surfaces of impurities.

The paste is applied to the solder pads, connecting the SMCs to the PCB once melted in the reflow oven. It’s essential that the correct amount of paste is applied to each pad, as improper application can prevent proper connections from forming during reflow.

3. Component Placement

In this stage, pick-and-place machines accurately position components on the PCB. The machines use vacuum or gripper nozzles to remove each component from its packaging and place it onto the board. These machines are fast and precise, capable of placing up to 80,000 components per hour.

Precision is key here, as any misplaced components could lead to costly rework once soldered.

4. Reflow Soldering

After components are placed, the PCB is moved into the reflow oven for soldering. The board passes through several temperature-controlled zones:

  • Preheat Zone

The temperature is gradually increased to between 140℃ and 160℃ at a rate of 1.0℃-2.0℃ per second to ensure the board and components heat evenly.

  • Soak Zone

The PCB is maintained at this temperature for 60 to 90 seconds to stabilize the heat across the entire board.

  • Reflow Zone

The temperature is then raised to 210℃-230℃ to melt the solder paste, bonding the components to the PCB. The molten solder’s surface tension keeps the components in place during this process.

  • Cooling Zone

In the final zone, the solder is rapidly cooled to solidify the connections and prevent any soldering defects.

For double-sided boards, this process may need to be repeated, either using solder paste or adhesive to secure components.

How to Make SMT? What is SMT Process?

5. Cleaning and Inspection

Once the soldering process is complete, the PCB is cleaned and inspected for any defects. This is done using magnifying lenses, Automated Optical Inspection (AOI), flying probe testers, X-ray inspection, and other tools to ensure accuracy. Any flaws are repaired before the finished product is packaged and stored.

What are the basics of SMT?

SMT simplifies assembly by reducing the need for drilled holes and using smaller components. Unlike traditional through-hole components, SMT parts are placed on the surface of the PCB, making the design more compact.

The basic elements of SMT include:

  • PCBs: The base for components, designed with specific pads for each part.
  • Solder Paste: A mixture of metal solder particles and flux, used to create a bond between components and the board.
  • SMT Components: Small electronic parts, such as resistors, capacitors, and ICs, that attach to the PCB.

The transition from through-hole technology to SMT has improved manufacturing speed and performance in electronics.

How do I prepare for SMT?

As the core step of electronic product manufacturing, PCBA’s preparation before assembly directly affects the quality and reliability of the final product. The following is a detailed analysis from multiple dimensions:

1. Component inspection

Before assembly, all electronic components must undergo strict screening and inspection. This includes checking that the component type, package, number of pins, etc. are consistent with the BOM (Bill of Materials), as well as performing the necessary electrical performance tests.

2. Take ESD measures

Static damage to electronic components is invisible, but the consequences are serious. Therefore, when distributing materials and testing IQC, warehouse personnel should wear anti-static gloves, reliably ground the instrument, and lay anti-static rubber MATS on the work surface. During the assembly process, the operator should also wear anti-static clothes, anti-static bracelets and other protective equipment to ensure that the workbench and equipment are well grounded.

3. Cleanliness requirements

The work workshop and workbench must be kept clean to prevent contaminants such as dust and impurities from entering the circuit board, affecting the accuracy and quality of the patch. Clean the work surface and workshop floor regularly. Smoking, eating and drinking are strictly prohibited in the work area.

How to Make SMT? What is SMT Process?

4. Temperature and humidity control

Appropriate temperature and humidity should be maintained in the workshop to reduce static electricity generation and the impact on electronic components. It is usually recommended that the temperature be controlled at 23±3oC and the humidity be controlled at 45% to 70%RH. This environment helps to ensure the quality of welding and the stability of electronic components.

5. PCB appearance check

Before assembly, the PCB board should be visually inspected to confirm whether it is complete, whether the surface coated solder resistance layer is intact, and whether there are obvious short circuits and defects. Use a multimeter to check whether there is a short circuit between the power supply and the ground terminal on the printed board, and ensure that the printed board is fine.

6. Check the software and hardware

When the PCBA needs to be upgraded, the motherboards produced in different time periods should not be mixed together to avoid mixing problems. Before assembly, check whether the final use of the software is in accordance with customer requirements to ensure that the software and hardware are compatible and correct.

7. Welding process selection

According to the layout of the circuit board and the characteristics of the components, select the appropriate welding process (such as wave soldering, reflow welding, hot blast furnace welding, etc.). Each welding method has specific requirements for the placement, orientation and spacing of components that need to be planned in advance.

8. Manually prepare the post-welding plug-in components

For some components that cannot be automatically welded (such as large connectors, heat sinks, etc.), manual plug-in assembly is required. This requires the operator to have a wealth of experience and skilled skills to ensure the accuracy and robustness of the plug-in.

9. Perform ESD operations

During operation, use an ESD workbench and an ESD container to hold components and semi-finished products. All welding equipment should be grounded, the electric soldering iron must be anti-static type, and tested before use.

10 Cleaning and protective treatment

After the assembly is complete, the product needs to be cleaned to remove the residue and contaminants generated during the welding process. At the same time, appropriate protective treatment of the product, such as spraying three anti-paint, etc., to improve the product’s moisture, dust and corrosion resistance.

Which solder paste is used in SMT?

The type of solder paste used in SMT assembly process depends on several factors, such as the materials of the components and the PCB, as well as the operating conditions of the finished product. Generally, there are mainly include high temperature solder paste, ‌ medium temperature solder paste and low temperature solder paste. ‌

  • High temperature solder pastes are commonly used in applications where higher temperatures are required for welding. ‌ has a higher melting point and ‌ is suitable for welding electronic components with specific temperature requirements. ‌
  • Medium temperature solder paste and low temperature solder paste are suitable for medium and low temperature welding respectively, ‌ select the appropriate solder paste type according to the specific welding needs. ‌
How to Make SMT? What is SMT Process?

In addition, ‌ solder paste can also be classified according to the flux activity level, ‌ including “R” (‌ inactive) ‌, ‌ “RMA” class (‌ moderate activity) ‌, ‌ “RA” class (‌ completely reactive) ‌ and “SRA” class ‌ (‌ super activity). ‌ Different types of activity levels are suitable for different application scenarios, ‌ for example, ‌ “R” grade is usually used for welding aerospace, ‌ avionics products, ‌ and “RA” grade is suitable for consumer electronics products. ‌ This classification allows users to choose the right solder paste according to the specific application needs and cleaning process requirements. ‌

What temperature should a soldering iron be for SMT?

The right temperature for soldering in SMT can vary depending on the solder paste and components you’re using. Typically, the soldering iron should be set between 250°C and 300°C. Using a lower temperature might not properly melt the solder, while a higher temperature could damage components or the PCB.

Of course, different types of PCB requires different temperature. For example, ceramic PCBs has fragile surface, so a lower temperature is good.

What are the disadvantages of SMT?

  • Small volume (due to the limitation of components)
  • Fragility
  • High soldering requirements
  • Easily damaged or dropped
  • Challenging to inspect
  • Complex process and inspection
  • High equipment investment

How to solder SMT at home?

Soldering SMT components at home can be tricky, but with the right tools and techniques, it’s doable. Here’s a quick guide:

  1. Tools: You’ll need a fine-tip soldering iron, tweezers, solder paste, and flux. You may also want a magnifying glass or microscope for better visibility.
  2. Apply Solder Paste: Use a small amount of solder paste on the pads of the PCB where you want to place your components.
  3. Place Components: With tweezers, carefully place the components onto the solder paste. Make sure they are properly aligned with the pads.
  4. Reflow the Solder: If you have a reflow oven, you can use it to heat the board. Alternatively, a hot air rework station can also work.
  5. Inspect: Once the solder has cooled, check the connections. If necessary, reheat or add more solder to fix any weak joints.

Best Technology is a one-stop PCB & PCB assembly manufacturer founded in 2006, with 5 assembly lines. If you have needs for PCB and PCBA fabrication, we can be your reliable supplier from prototypes to bulk production. In addition, we have SMT factory in Vietnam, if you don’t want to make smt in Shenzhen, then we can support you in Vietnam. Welcome to contact us if you have such PCB and PCBA projects.

What is a 3.3 k Resistor?  3.3 k ohm Resistor Color Code

August 15th, 2024

Resistors are a key part of any circuit board design. They help regulate current, manage voltage, and protect other components. One type that often appears in various projects is the 3.3 k ohm resistor. Whether you’re building a simple circuit or tackling a complex project, understanding the value and role of a 3.3 k ohm resistor can save you time and effort.

In this article, we’ll dive into what a 3.3 k ohm resistor is, how to identify it using the color code, and the differences between the 4-band, 5-band, and 6-band codes. Additionally, we’ll explain how to read an SMD resistor code, and explore the advantages of using this particular resistor in your projects.

What is a 3.3 k Ohm Resistor?

A 3.3 k ohm resistor is a fixed resistor that has a resistance value of 3,300 ohms. In electronic circuits, resistors limit current flow, divide voltages, and protect sensitive components from damage. The ‘k’ in the resistor’s name stands for kilo, meaning 1,000. Therefore, a 3.3 k ohm resistor has a resistance of 3,300 ohms. These resistors are widely used in both analog and digital circuits, making them a versatile choice for electronics enthusiasts.

What is a 3.3 k Resistor?  3.3 k ohm Resistor Color Code

3.3 k Ohm Resistor Color Code

The color code of a 3.3 k ohm resistor is a standardized way to easily identify the resistor’s value. You may notice a series of colored bands on the resistor’s body. Each of these bands represents a number, and when combined, they give you the resistance value.

For a 3.3 k ohm resistor, the color bands would typically be:

  • Orange (3)
  • Orange (3)
  • Red (×100 multiplier)
  • Gold or Silver (tolerance)

3.3 k Ohm Resistor Color Bands

Resistors typically have between 4 and 6 color bands. These bands convey different pieces of information such as resistance value, tolerance, and sometimes even temperature coefficient. The bands are read from left to right. Let’s break down a 4-band 3.3 k ohm resistor:

  • First Band: The first band indicates the first digit of the resistor value. In this case, orange represents the number 3.
  • Second Band: The second band represents the second digit, which is again 3.
  • Third Band: The third band is the multiplier, which in this case is red, meaning ×100.
  • Fourth Band: The fourth band is either gold (±5%) or silver (±10%) to represent tolerance.

How To Read the 3.3k Ohm Resistor Color Code?

Reading the 3.3k ohm resistor color code is straightforward once you understand how the color bands correspond to numerical values. Here is a resistor color band chart:

ColorValueMultiplierTolerance
Black0×1N/A
Brown1×10±1%
Red2×100±2%
Orange3×1,000N/A
Yellow4×10,000N/A
Green5×100,000±0.5%
Blue6×1,000,000±0.25%
Violet7×10,000,000±0.1%
Gray8×100,000,000±0.05%
White9×1,000,000,000N/A
GoldN/A×0.1±5%
SilverN/A×0.01±10%
NoneN/AN/A±20%

Step 1: Identify the number of bands

Resistors typically come with 4, 5, or 6 color bands. So, the first thing is to count how many color bands are on the resistor. For a 3.3k ohm resistor, the color bands are used to indicate the value of the resistance and the tolerance.

  • 4-Band Resistor: Two significant digits, a multiplier, and a tolerance band.
  • 5-Band Resistor: Three significant digits, a multiplier, and a tolerance band.
  • 6-Band Resistor: Three significant digits, a multiplier, a tolerance band, and a temperature coefficient band.

Step 2: Read the digits according to the color band chart

For resistors with 4, 5, or 6 bands, the first two or three bands represent the significant digits of the resistance value. For a 3.3k ohm resistor, these digits are “3” and “3,” corresponding to the color orange.

For 5- and 6-Band Resistors, the first three color bands represent the significant digits. So, in a 5- or 6-band resistor, you would still have orange (3) and orange (3), with an additional third digit, typically black (0), in this case.

Step 3: Apply the Multiplier

The next band is the multiplier, which tells you what to multiply the significant digits by. For a 3.3k ohm resistor, the multiplier is red, indicating ×100.

For 4-Band Resistor, the third band is the multiplier. For 3.3k ohms, the third band is red, so you multiply the significant digits (33) by 100, giving you 3,300 ohms. And 5- and 6-Band Resistors, the fourth band is the multiplier. In this case, the multiplier is brown (×10), so the calculation would still result in 3,300 ohms.

Step 4: Check the tolerance

The final band in 4- and 5-band resistors represents the tolerance, which indicates how much the actual resistance value can vary from the stated value. For a 3.3k ohm resistor, this band could be either gold (±5%) or silver (±10%).

  • Gold Band: Indicates that the actual resistance can vary by ±5%.
  • Silver Band: Indicates that the actual resistance can vary by ±10%.

For example, if the tolerance is ±5%, the actual resistance of a 3.3k ohm resistor could be anywhere between 3,135 ohms and 3,465 ohms.

Step 5: Read the temperature coefficient (if present)

For 6-band resistors, the sixth band represents the temperature coefficient. This tells you how much the resistance changes with temperature, usually measured in parts per million per degree Celsius (ppm/°C). This is particularly important in high-precision circuits where temperature changes could significantly affect the performance of the resistor.

4-Band vs. 5-Band vs. 6-Band 3.3k Ohm Resistor Color Code

The number of bands on a resistor depends on its precision and tolerance. Here’s how the 3.3 k ohm resistor color code varies across different band systems:

Number of Bands1st Band2nd Band3rd BandMultiplierToleranceTemperature Coefficient
4-BandOrange (3)Orange (3)Red (×100)Red (×100)Gold (±5%)N/A
5-BandOrange (3)Orange (3)Black (0)Brown (×10)Gold (±5%)N/A
6-BandOrange (3)Orange (3)Black (0)Brown (×10)Gold (±5%)Brown (100 ppm/°C)
What is a 3.3 k Resistor?  3.3 k ohm Resistor Color Code

What is the Code for a 3.3 k SMD Resistor?

SMD (Surface Mount Device) resistors are small and lack the space for color bands. Instead, they use numbers to indicate their value. For a 3.3 k ohm SMD resistor, you will often see the code “332.” This code translates to 33 × 100, giving you 3,300 ohms.

What is the Color Code of a 333 k Resistor?

A 333 k ohm resistor has a resistance value of 333,000 ohms. The color code for this resistor would be:

  • Orange (3)
  • Orange (3)
  • Orange (×1,000 multiplier)
  • Gold or Silver (tolerance)

Advantages of a 3.3k Ohm Resistor

A 3.3k ohm resistor is commonly used in circuits requiring precise voltage regulation. Its resistance value is particularly suited for voltage dividers, where the ratio of the resistor values determines the output voltage. Here are some advantages of using 3.3k ohm resistor:

1. Precision in Voltage Regulation

2. Ideal for Current Limiting in LED Circuits

3. Commonly Used in Analog Signal Processing

4. Flexibility in Design and Configuration

5. Power Efficiency

6. Compatibility with Digital and Analog Devices

7. Stability and Durability

8. Cost-Effectiveness

What is the Tolerance of a 3.3k Ohm Resistor?

Tolerance refers to how much a resistor’s actual resistance value can vary from its labeled value. Common tolerance levels are ±5% (gold band) and ±10% (silver band). For example, a 3.3 k ohm resistor with a 5% tolerance could have a real resistance value between 3,135 ohms and 3,465 ohms.

Is k the Same as Ohm?

No, ‘k’ and ‘ohm’ are not the same. ‘Ohm’ (Ω) is the unit of resistance, while ‘k’ is a prefix meaning 1,000. So, when we say 3.3 k ohms, it means 3,300 ohms.

FAQs

1. How can I quickly identify a 3.3 k ohm resistor?

Look for the orange, orange, red color bands on the resistor body.

2. What is the role of a 3.3 k ohm resistor in a circuit?

It helps manage current, divide voltage, and protect other components from excess current.

3. Can I use a 3.3 k ohm resistor in high-frequency circuits?

Yes, its stable performance makes it suitable for both high and low-frequency circuits.

4. How do I check if a 3.3 k ohm resistor is working?

You can measure the resistance using a multimeter.

5. Why is a 3.3 k ohm resistor often used in audio circuits?

It offers a good balance of resistance, which is ideal for filtering and reducing noise in audio signals.

hdi printed circuit board,hdi pcb manufacturer

August 14th, 2024

What is hdi pcb?

HDI stands for High Density Interconnect, which refers to high-density interconnect technology. HDI circuit board is a high-end printed circuit board with very high circuit density and complexity, which can achieve high-speed signal transmission and reliability design. The main features of HDI circuit board are multi-layer circuit, thin plate, small aperture, dense wiring and fine circuit. It is widely used in mobile phones, computers, network communications, automotive electronics and other fields. Bestpcb is a professional HDI manufacturer with 18 years of HDI manufacturing experience.

What are the advantages of hdi pcb

  1. Higher line density: HDI PCB can support more circuit tracks, arrange more electronic components in a limited space, and achieve high-density interconnection.
  2. Smaller device spacing: The micro-hole technology of HDI PCB allows smaller spacing between components, which is suitable for compact design.
  3. Improve signal integrity: The advanced stacking layer structure is adopted to provide better signal transmission quality and reduce signal interference.
  4. Improve reliability: The manufacturing process of HDI PCB improves the mechanical strength of the board, making it more durable and suitable for demanding application environments.
  5. Improve circuit integration: More line connections and component arrangements are achieved in a limited circuit board space to meet the needs of modern products that are thin and compact.
  6. Enhance signal transmission efficiency: The use of advanced wires and connection methods can increase the operating speed of electronic devices and reduce energy consumption.
  7. Support more complex system design: High-density connection capabilities provide support for complex system design and give full play to the performance of electronic devices. ‌
  8. Promote innovation in the electronics industry: The application of HDI technology has promoted the innovation and development of the electronics industry, making electronic equipment more intelligent and efficient. ‌
  9. Smaller size: It can complete a large number of circuit connections in a smaller space, meeting the needs of electronic products for lightness and portability. ‌
  10. Higher signal transmission speed: The high-density line design allows signals to be transmitted quickly in a short time, improving the system operation speed and response speed.

Why does HDI PCB need via filling and plating?

‌Via filling plating plays a vital role in ‌HDI PCB manufacturing, with the main purpose of improving ‌electrical performance, connection reliability, operating frequency, and avoiding electromagnetic interference. This technology fills the blind holes of HDI PCB with conductive materials through the electroplating process to form a conductive path, which improves the performance and reliability of electronic equipment.

  1. Improve electrical performance: Via filling plating can improve the electrical performance of HDI PCB, especially in high-frequency circuit board design, which is crucial for improving connection reliability, operating frequency and avoiding electromagnetic interference.
  2. Via plugging and electrical interconnection in one step: Via filling plating technology combines via plugging and electrical interconnection, avoiding the defects caused by resin via filling, and also avoiding the CTE difference caused by other materials via filling.
  3. Improve efficiency: Compared with resin via filling or other materials via filling, via filling plating has a simpler process and higher efficiency.
  4. Process flow and technical challenges of via filling plating
  5. Process flow: including steps such as tank preparation, setting of electroplating process control parameters, and analysis of potion addition.
  6. Technical challenges: including positioning accuracy issues and electroplating quality issues, which need to be solved by strictly controlling parameters such as electroplating time and current density.

Application scenarios of hole filling electroplating

First-order HDI: Suitable for electronic devices with less complex circuits.
Second-order and above blind hole electroplating copper filling: Suitable for more complex electronic devices, such as mobile phones, laptops, etc.
Comparison between hole filling electroplating and full-board electroplating
Full-board electroplating: Although it can provide a uniform surface copper thickness distribution, it may encounter the problem of residual dry film on the board surface or in the hole during pre-treatment, resulting in some areas unable to be plated with copper. In addition, the etching process after full-board electroplating may cause quality defects such as side etching and fine lines.
Hole filling electroplating: Compared with full-board electroplating, hole filling electroplating is more accurate in filling blind holes, avoiding the problems that may be encountered in full-board electroplating, while simplifying the process and improving efficiency.

Materials of HDI PCB

The materials of HDI PCB mainly include coated copper foil (RCC), prepreg, copper foil, etc.

Resin-coated copper foil (RCC): This is a material that coats a special resin film layer on electroplated copper foil, used for HDI insulation layer. The characteristics of RCC include no glass dielectric layer, easy laser and plasma micro-hole forming, extremely high peel strength and good toughness, suitable for micro-narrow line etching. Laser drilling is performed on RCC, and the aperture shape formed is an inverted trapezoid, and the general aperture size is 0.076-0.10 mm. The use of RCC makes HDI PCB more widely used in small portable products, such as mobile phones, digital cameras, laptops, etc.

Prepreg and copper foil: These are basic materials in HDI PCB manufacturing, there are no special requirements, and they are suitable for different types of HDI PCB structures. The inner layer circuits are generally 1 ounce copper thick, while the outer layer circuits are plated with half an ounce of base copper to 1 ounce of finished copper thickness. The thickness of the board is usually thinner to meet the miniaturization requirements of HDI PCB.

Other materials: In addition to the main materials mentioned above, the manufacture of HDI PCBs may also involve other materials, such as FR4, PI (polyimide), BT, etc. These materials are selected according to specific application requirements. For example, FR4 has good electrical and mechanical properties and is suitable for most general applications; PI has higher heat resistance and chemical corrosion resistance, and is suitable for high temperature, high humidity and strong acid and alkali environments, but it is more expensive and difficult to process; BT combines good electrical properties, mechanical properties and thermal stability, and is suitable for application scenarios that require higher heat resistance.

Classification of HDI circuit boards

HDI circuit boards are mainly divided into first-order, second-order, third-order, high-order (including fourth-order and above) and Anylayer HDI. ‌

  1. First-order HDI circuit boards mainly include single-sided or double-sided micro-hole processes, and the circuit layer has only one layer. ‌This type of HDI circuit board is suitable for applications with high requirements on cost and space, such as consumer electronics. ‌
  2. Second-order HDI circuit boards contain two circuit layers, which are more complex but also more powerful than first-order HDI circuit boards. They can handle higher signal frequencies and are suitable for applications that require high performance, such as high-end communication equipment and computer hardware. ‌
  3. Third-order HDI circuit boards contain three circuit layers. They are the most complex type at present. They can handle the highest signal frequency and the maximum data transmission rate. They are usually used in applications that require the highest performance, such as aerospace and military equipment. ‌
  4. High-order HDI (including fourth-order and above) The applications of third-order or fourth-order HDI in electronic terminal products are more, while those above fourth-order are mostly converted to Anylayer structure. ‌
  5. Anylayer HDI refers to HDI of any order/any layer. Compared with PCB boards with traditional lamination processes, HDI can reduce costs to a lower level when the stacking density exceeds eight layers. It also has higher electrical performance and signal accuracy, and significantly improves the performance of electromagnetic waves and radio frequency interference, electrostatic discharge and heat conduction in interconnection and relay transmission.

HDI PCB Process Flow

The process flow standards of HDI PCB mainly involve the application and processing technology of high-density interconnection technology (High Density Interconnection Technology, HDI for short), including first-order, second-order and third-order processes. Specifically, the HDI PCB process flow includes the following key steps and characteristics:

First-order process (1+N+1): This is a basic high-density interconnection technology that manufactures multi-layer boards through build-up and micro-blind via technology.

Second-order process (2+N+2): Further development on the basic technology, adding more layers and complexity.

Third-order process (3+N+3): Represents the highest stage of HDI technology, with extremely high layers and interconnection density

Differences between HDI PCB and ordinary PCBs

  1. Differences in circuit design:
    HDI PCB adopts a more sophisticated circuit design, with smaller line width and spacing, and smaller aperture, which can integrate more electronic components and realize more complex circuit functions. ‌
    The blind, buried and stacked hole designs of HDI PCB greatly improve the utilization rate and signal transmission performance of the circuit board.
  2. Differences in manufacturing process:
    The manufacturing process of HDI PCB is more complicated, requiring high-precision processes such as laser drilling technology, hole filling electroplating technology and photolithography technology.
    The manufacturing cost of HDI PCB is relatively high, but the performance and reliability are also higher. ‌
  3. Differences in application:
    Due to its high density and high performance, HDI PCB is widely used in high-end electronic products, such as smartphones, tablets, high-end communication equipment, etc.
    Ordinary PCB is mainly used in low-end electronic products and general electronic equipment.
  4. Characteristics and application scenarios of HDI PCB:
    HDI PCB has high-density wiring, multi-layer structure, high-precision manufacturing process and excellent electrical performance, which can meet the extremely high requirements of high-end electronic products for size, weight, performance and reliability.
    HDI PCB is widely used in smart phones, tablet computers, high-end communication equipment and other fields, promoting the continuous development and upgrading of electronic products.

Application of HDI PCB

HDI PCB (High Density Interconnection Printed Circuit Board) is widely used in multiple industries, including medical equipment, mobile phones, laptops, automotive electronics, computer industry, and future 5G technology fields

  1. Medical equipment: The application of HDI PCB in medical equipment, such as sphygmomanometers and ultrasonic imaging systems, achieves accurate measurement of blood pressure and high-definition imaging of the internal structure of the body, providing patients with timely and accurate diagnosis and treatment information. ‌
  2. Mobile phone industry: With the increasingly miniaturized design of mobile phones, HDI PCB is widely used in transceiver modules, motherboards, SIM card interfaces, fingerprint recognition modules and other parts of mobile phones due to its high density, high quality and high reliability. ‌
  3. Computer industry: In the computer industry, the application of HDI PCB improves the performance of computers, especially in the fields of high-speed algorithms and multimedia applications, and adapts to the miniaturization trend of computer equipment2. ‌
  4. Automotive electronics: HDI PCB has broad application prospects in the field of automotive electronics. In addition to the dominant mobile phone market, it also involves multiple fields such as automobiles, modules and artificial intelligence, demonstrating its key role in complex electronic systems. ‌
  5. Future development trends: With the advent of 5G technology, the demand for HDI PCB will continue to increase, requiring higher speeds and frequencies while adapting to smaller and thinner device designs. Research new micro HDI PCB boards to adapt to future development trends. ‌

A Comprehensive Introduction to Ceramic Circuit Board

August 14th, 2024

Ceramic circuit board has almost completely integrated into our daily life, and it is filled with all kinds of electronic products we use every day. However, the production of ceramic circuit board is not so simple. The ceramic material itself is brittle, and it is easy to break in the process of through-hole, which easily leads to the scrapping of the whole board. However, this problem can’t stop the development of ceramic circuit board, and its position in the electronic industry is becoming more and more important. So do you know how ceramic circuit board was born?

History of ceramic circuit board

The history of ceramic circuit boards can be traced back to the early 1950s. At that time, with the appearance of transistors, single-sided ceramic circuit boards were developed centering on the United States. The main manufacturing method in this period is the direct etching of copper foil as the mainstream. From 1953 to 1955, Japan made paper-based phenolic copper foil substrates from imported copper foil for the first time, and it was widely used in radios and other aspects. Subsequently, the emergence of professional circuit board manufacturers in Japan made the manufacturing technology of single panel progress rapidly, and ceramic circuit boards also entered the development stage. ‌

In the development process of ceramic circuit board, it has experienced the transformation from single panel to double panel. Compared with single panel, double panel has wiring on both sides, and leads on both sides are connected through guide holes, which is suitable for more complex circuits. There is more flexibility in the design of double-panel circuits, because the wiring can be carried out on both sides and staggered with each other, which increases the complexity of circuit design but also improves the performance and function of the circuit. ‌

What are the problems faced by traditional pcb circuit boards? ‌

With the increasing variety of electronic products, it is necessary to use the circuit board in assembly, but the first problem that has to be faced is the heat dissipation of the circuit board. With the continuous expansion of the application scope of VLSI and the development trend of SMT, the design of organic laminated PCB is facing the challenge of heat dissipation, which is because the thermal conductivity of most ordinary PCBs is low. However, the thermal conductivity of ceramics is 90 times that of epoxy glass fiber, and it has excellent conduction cooling effect. Moreover, components on ceramic PCB usually have a lower junction temperature than ordinary PCB.

Secondly, there is another problem that needs to be faced, which is the CTE compatibility challenge. SMT technology, which became popular in the first half of 1980s, is affecting the whole electronic assembly industry. Because SMT technology directly welds electronic components on both sides of PCB, compared with THT (through hole technology), SMT technology has lower cost, higher reliability and easier automation, which can reduce the circuit size by five-sixths. Some reliable packages, such as LCC (leadless chip carrier), are very compatible with SMT requirements, but they usually cannot withstand the challenges brought by thermal cycling. Therefore, LCC is questioned from package reliability to on-board interconnection, because the CTE (coefficient of thermal expansion) incompatibility between LCC and PCB materials leads to welding failure. Therefore, ceramic PCB came into being. Ceramic PCB can provide the best solution to overcome thermal cycle failure, because they share compatible CTE with leadless ceramic chip carriers, and have higher thermal conductivity, higher stability and inertness.

Characteristics of ceramic circuit board

Compared with the traditional pcb based on phenolic resin (FR-4), glass fiber cloth (GPP), polytetrafluoroethylene (PTFE), epoxy glass fiber and polyimide, ceramic circuit board has superior thermal conductivity, high mechanical strength and durability, excellent electrical insulation and high dielectric strength.

With the development of multi-function, miniaturization, speediness and large-scale electronic equipment, stricter requirements are put forward for the durability, thermal conductivity, dielectric constant and electrical insulation of ceramic PCB. It can be predicted that the demand for ceramic PCB with aluminum nitride, alumina and glass ceramics as substrate materials will be increasing, and the market for ceramic circuit boards will be wider and wider.

What are the types of ceramic circuit boards?

At present, the common types of ceramic circuit boards are HTCC, LTCC, DBC, DPC, AMB, TFC (thin film ceramic board) and TPC (thick film ceramic board).

1. HTCC is an early developed technology. However, due to the high sintering temperature (1300~1600℃), the selection of electrode materials is limited, and the manufacturing cost is relatively expensive, which makes the development of HTCC slow.

2. Although LTCC reduces the co-firing temperature to about 850℃, it has the disadvantage that dimensional accuracy and product strength are not easy to control.

3. DBC combines Al2O3 with Cu plate by high temperature heating. Its technical bottleneck is that it is not easy to solve the problem of micro-pores between Al2O3 and Cu plate, which makes the mass production energy and yield of this product greatly challenged.

4. DPC technology is to deposit Cu on Al2O3 substrate by direct copper plating technology. Its technology combines material and thin film technology, and its products are the most commonly used ceramic heat dissipation substrate in recent years. However, its ability of material control and process technology integration is high, which makes the technical threshold for entering DPC industry and stable production relatively high. DBC&DPC is a professional technology that has only been developed and matured in recent years in China and can be mass-produced.

5. AMB ceramic copper clad laminate adopts AMB active brazing process, and the bonding force of copper layer is higher than DPC, which is above 18n/mm and as high as 21 N/mm.. AMB ceramic copper clad laminate usually has high bonding force, and the copper is usually thick, ranging from 100 μ m to 800 μ m, and it is rarely used for wiring or punching. Even if there are wires, it is very simple and the spacing is relatively wide.

6. TFC thin-film ceramic substrate generally adopts sputtering process to directly deposit metal layer on the surface of ceramic substrate. If photolithography, development, etching and other processes are assisted, the metal layer can also be patterned and prepared into lines. Because the deposition speed of sputtering coating is low (generally less than 1um/h), the thickness of the metal layer on the surface of TFC substrate is small (generally less than 1um), and ceramic substrates with high graphic accuracy (line width/line spacing less than 10um) can be prepared. It is mainly used for packaging small current devices in the field of laser and optical communication.

7. TPC thick film ceramics is a method of forming conductive lines and electrodes by screen printing, directly depositing slurry on the substrate and sintering at high temperature. This method is suitable for most ceramic substrates. After high temperature sintering, the material will form a firmly adhered film on the ceramic circuit board, and after repeated for many times, it will form a circuit with multi-layer interconnection structure containing resistance or capacitance. The advantage of this technology is that the process is simple, but the disadvantages are obvious: the conductors are gold paste and silver paste, limited by the size of conductive paste and screen, the minimum wire width of the product is difficult to be less than 100μm, and it is impossible to make three-dimensional graphics, so it is not suitable for the production of fine circuit boards.

Where is the ceramic circuit board used?

1. LED lighting

2. Power electronics

3. Aerospace

4. Automotive Electronics

5. Medical equipment

6. high frequency communication

7. chemical equipment

8. industrial electronics

Ceramic circuit boards are widely used in all walks of life because of their unique properties, especially in the electronic circuit industry.

Since its birth, ceramic circuit boards have been widely used. With the development of electronic industry, in order to adapt to the application of special industries, the types of ceramic circuit boards have become more and more diverse. As a professional manufacturer of ceramic circuit boards, BEST Technology is committed to providing high-quality products and comprehensive technical support. For different types of ceramic circuit boards, BEST Technology also has professional equipment and personnel to produce them. Choose a powerful manufacturer of ceramic circuit boards, and you will have no worries.