PCB manufacturing PCB manufacturing
Home > Blog

Archive for the ‘PCB Technology’ Category

PCB Gold Finger Beveling Design, PCB Deisgn Guide
Tuesday, July 8th, 2025

Gold fingers are one of the most critical features in many circuit boards, especially those used in high-reliability connections. Whether you’re building a test interface, designing a PCIe card, or creating an edge connector, understanding gold finger beveling and its plating design is essential for durability and smooth performance.

Let’s explore everything about PCB gold fingers, the beveling process, and how to choose the right beveling angle for your board design.

PCB Gold Finger Beveling Design, PCB Deisgn Guide

What Is a Gold Finger?

PCB gold fingers are the gold-plated connectors located along the edge of a printed circuit board. They serve as contact points when a PCB is inserted into a slot or connector, just like in RAM, GPU cards, or other modular systems. These fingers are plated with hard gold to ensure they can withstand repeated insertion and removal cycles without wearing out.

They are called “fingers” because they look like narrow, elongated pads stretching along the PCB’s edge, similar to the fingers of a hand. Each gold finger connects to a circuit trace inside the board. When the PCB is inserted into a slot, the metal contacts on the gold fingers align with the contacts inside the connector, allowing signals to pass through.

The main reason gold is used is because it doesn’t corrode easily. Gold provides high conductivity and can withstand many insertions without losing its shape or functionality. In critical environments—like military, aerospace, or telecom—this reliability is essential.

Types of Gold Fingers in PCB

PCB gold fingers can be divided into two types – graded gold fingers and staggered gold fingers.

Types of Gold Fingers in PCB
  • Graded Gold Finger

Graded gold fingers refer to a design where the fingers are plated with gold at varying lengths or staggered elevations. Instead of all the fingers being aligned in a straight line, some are slightly longer than others. This is not just a visual variation—it serves a very specific purpose. Graded fingers are typically used in applications where controlled insertion sequencing is required. When the PCB is inserted into the slot, the longer fingers make contact first, followed by the shorter ones.

  • Staggered Gold Fingers

Another design strategy is using long and short gold fingers—also known as staggered gold fingers. This refers to gold fingers of different physical lengths on the same board edge, but typically without beveling or plating depth variation. This technique is commonly used in:

  • PCIe hot-pluggable cards
  • Industrial control systems with replaceable modules
  • Burn-in or test fixtures requiring safe first-contact

The lengths are designed based on the depth of the connector slot and how the PCB enters the socket. Sometimes only a few pins—such as GND or VCC—are made longer, while the rest remain short.

How Thick Is PCB Gold Finger Plating?

The durability of gold fingers comes from their plating thickness. Not all gold fingers are created equal. The thickness of the plating affects both how well they perform and how long they last.

The gold layer is not pure; it is electroplated hard gold, which includes a bit of cobalt to improve hardness and wear resistance. Here’s a breakdown of common thicknesses:

Application TypeGold Plating Thickness (Hard Gold)
Standard Consumer Devices0.76ÎŒm (30ÎŒin)
Industrial or Light Insertion1.27ÎŒm (50ÎŒin)
High-Durability Applications2.54ÎŒm (100ÎŒin)

In general, 50ÎŒin is the most common for boards that are plugged and unplugged many times. If the fingers are not meant to be removed often, thinner plating is usually fine. But when in doubt, thicker is better—it provides stronger wear resistance.

What Is the Process of Gold Plating in PCB?

Creating strong, reliable pcb gold fingers requires precision. The plating process is done after the rest of the board is fabricated and cleaned. The focus is to add a hard gold layer only to the fingers—nowhere else. Here’s how the PCB gold finger plating process works step-by-step:

1. Finger Area Isolation

First, the PCB is cleaned, and only the finger areas are exposed. The rest of the board is masked to prevent unwanted plating elsewhere.

2. Nickel Plating (Bottom layer)

A nickel layer (typically 3–6ÎŒm) is electroplated onto the copper finger base. Nickel improves gold adhesion and acts as a barrier to prevent copper from diffusing into the gold over time.

3. Gold Electroplating (Top Layer)

After nickel, a layer of hard gold is plated on top. This layer is usually between 30ÎŒin and 100ÎŒin depending on the application. The plating uses a current that drives gold ions onto the nickel surface.

4. Cleaning and Inspection

Once the plating is complete, the board is cleaned, and the gold fingers are inspected for uniformity, roughness, or any missing areas.

5. Beveling (If Required)

If beveling is needed, it is done after plating. The edge is shaped to allow easier insertion into connectors.

6. Final Finishing

The rest of the PCB receives its finish (e.g., ENIG, OSP, HASL), but gold fingers remain untouched.

This plating method results in durable, smooth connectors that resist oxidation and mechanical wear.

What Is Gold Finger Beveling?

Gold finger beveling is a mechanical process that trims the edge of the PCB—where the gold fingers are located—into a sloped angle. Rather than a blunt 90° edge, the bevel creates a smooth ramp-like surface.

Imagine sliding a PCB into a connector. A sharp edge might catch, damage the connector, or scrape off the plating. But a beveled edge slides in smoothly, reducing friction and improving contact.

This is especially useful for PCBs used in:

  • Backplane systems
  • Server racks
  • Communication modules
  • Plug-and-play components

The beveling process is typically done using precision grinding or CNC milling. Care is taken to maintain exact angle measurements without overcutting the gold plating.

What Is Gold Finger Beveling?

Purpose of Gold Finger Beveling

There are several important reasons why beveling is applied to PCB gold fingers:

  • Easier Insertion

A beveled edge helps the PCB slide into the connector smoothly. It reduces the chance of misalignment or jamming.

  • Prevents Contact Damage

Without beveling, the sharp PCB edge can scratch the connector pins, causing early wear or performance issues.

  • Reduces Wear and Tear

Repeated insertion cycles can wear out the gold plating. Beveling distributes the pressure more evenly, extending the lifespan of both board and connector.

  • Better Electrical Contact

Smoother insertion means better alignment and tighter contact with the metal pins inside the slot. This leads to more stable signals and fewer connection errors.

  • Professional Manufacturing Finish

Beveled gold fingers look more refined, signaling high-quality PCB craftsmanship.

For any board that’s going to be removed and reinserted frequently, beveling is not just a good idea—it’s almost essential.

Gold Finger Beveling Angle Options

When beveling, you have options for the bevel angle. The choice depends on how the PCB fits into its slot and the degree of insertion force you want to reduce. Here are the common beveling angles:

AngleDescription
30°The most popular angle. Balances mechanical strength and ease of insertion.
40°Offers a smoother slope than 30°. Used when insertion needs to be gentle.
45°The steepest slope. Useful when the board must glide into the slot with minimal resistance.

Most applications stick with 30°, but you should always check the connector specification. Some high-density or high-speed connectors might require tighter tolerances and smoother entry paths.

Considerations of Beveling Angles

Before you finalize your beveling angle, consider the following:

  • Slot Geometry

Look at how your connector or socket is shaped. If the slot opening is narrow, a steeper bevel (like 45°) might be helpful.

  • Insertion Frequency

If the PCB will be removed often—like in test or modular setups—a smoother entry reduces long-term damage.

  • Mechanical Strength

Sharper bevels remove more material. If your board edge carries mechanical load, avoid overly steep bevels.

  • Gold Coverage

The beveling process should never cut through the gold. Make sure the gold plating thickness is enough to cover the entire bevel.

  • IPC Guidelines

Refer to IPC-6012 and IPC-A-600 for guidelines on gold finger design, plating, and beveling requirements.

Always coordinate with your PCB manufacturer to ensure the chosen bevel angle is feasible and matches your product’s functional needs.

PCB Gold Fingers Applications

Gold fingers are everywhere. Any device that uses edge connectors likely has them. Some of the most common use cases include:

  • Graphics cards (GPU) – for connecting with the motherboard
  • RAM modules – inserted into DIMM slots
  • Motherboards and backplanes – for communication between layers or devices
  • Test interface boards – for burn-in, programming, or debugging
  • PLC and industrial control systems – for module plug-in
  • Medical and defense electronics – where reliability is critical

In all these applications, gold finger beveling helps ensure the boards don’t fail during connection or removal. It may seem like a small detail, but its effect on reliability is huge. Gold finger beveling is one of those small but powerful features that improves the mechanical fit, electrical contact, and overall durability of your circuit boards. When designing your next PCB, pay attention to:

  • The gold finger plating thickness
  • Whether beveling is needed
  • The best angle for smooth insertion
  • And the wear-and-tear the board will experience

These decisions affect not only how well the board works, but how long it lasts.

About Best Technology

At Best Technology, we specialize in PCB manufacturing with a focus on high-reliability boards. We handle everything from custom hard gold finger design to precision beveling, ensuring your edge connectors meet international standards. Our team works with industries including medical, automotive, aerospace, and telecom.

We follow strict quality processes and use MES traceability systems to track every step. Whether you need quick prototypes or high-volume production, our engineers are ready to help you design, test, and deliver high-performance PCBs with durable gold fingers.

Looking for a PCB manufacturer that understands the details? Let’s build your next project together.

FAQs

1. Can I design gold fingers without beveling?

Yes, but for any board that will be plugged in and out regularly, beveling is highly recommended for smoother insertion and longer lifespan.

2. What’s the difference between ENIG and hard gold?

ENIG is used on pads for soldering. Hard gold is plated on fingers for wear resistance. They are different in composition and use.

3. How do I specify beveling on my Gerber files?

You should include a separate mechanical drawing or notation in the fabrication notes to indicate the beveling angle and location.

4. Are gold fingers more expensive to produce?

Yes, due to the electroplating process and gold material cost. However, they add significant durability and value.

5. Can gold finger plating wear off?

Over time, yes—especially if the plating is thin. Using thicker plating like 50ÎŒin or more helps prevent this.

RO4350B PCB Material: Why Choose it for High Frequency PCB?
Friday, July 4th, 2025

Rogers RO4350B is one of the most popular PCB materials used in high-frequency applications today. If you’re designing circuits that need stable performance at GHz-level speeds, this material often stands out. In this blog, we’ll explore what RO4350B is, what it’s made of, available thicknesses, and why it’s preferred over other materials for high-frequency PCB designs.

What Is Rogers RO4350B Material?

RO4350B is a type of high-frequency laminate developed by Rogers Corporation. It’s engineered for performance in RF (radio frequency) and microwave applications, offering superior electrical characteristics compared to standard FR-4. Unlike generic epoxy-based materials, RO4350B uses a hydrocarbon-ceramic composition that keeps signal losses low even at high frequencies.

This material combines the electrical performance of PTFE (commonly used in high-end RF applications) with the manufacturability of FR-4, making it a cost-effective and reliable choice for high-speed designs.

What Is Rogers RO4350B Material?

What Is Rogers Material Made of?

Rogers materials, including RO4350B, are made from hydrocarbon resins with ceramic fillers and reinforced with woven glass. This composite structure delivers excellent mechanical stability and consistent dielectric properties.

Unlike traditional PTFE-based laminates, Rogers materials like RO4350B do not require special handling during PCB fabrication, which saves both time and cost. Rogers materials are engineered to balance electrical performance with ease of manufacturing, which is essential when producing high-frequency PCBs at scale.

RO4350B Dielectric Constant

The dielectric constant (Dk) is a critical factor in high-frequency PCB materials, as it affects signal speed and impedance control. The RO4350B dielectric constant is typically 3.48 ± 0.05 at 10 GHz, which is both stable and predictable over a wide range of frequencies and temperatures.

The consistency of frequencies and temperatures ensure that transmission lines behave as expected, which is especially important in RF circuits, microwave devices, and antenna structures. Stable Dk also simplifies impedance control and reduces the risk of signal reflection and distortion.

What Is the Standard RO4350B Thickness?

RO4350B PCBs are available in multiple standard thicknesses to meet different design and performance requirements. Common options include:

  • 0.254 mm (10 mil)
  • 0.508 mm (20 mil)
  • 0.762 mm (30 mil)
  • 1.524 mm (60 mil)

These thicknesses allow designers to select the best stack-up for impedance control, thermal dissipation, and mechanical strength. Depending on your signal layer, ground layer spacing, or copper weight, one of these thicknesses will likely align with your project’s needs.

RO4350B Datasheet

Before choosing a material for your RF or high-speed digital PCB, it’s essential to understand the technical specifications. Here is a summary of the most important values from the RO4350B datasheet:

PropertyTypical ValueTest Condition / Note
Dielectric Constant (Dk)3.48 ± 0.05@ 10 GHz (z-axis)
Dissipation Factor (Df)0.0037@ 10 GHz
Volume Resistivity1.7 × 10⁞ MΩ·cmASTM D257
Surface Resistivity4.4 × 10⁷ MΩASTM D257
Electrical Strength>800 V/milASTM D149
Dielectric Breakdown>40 kVASTM D149
Thermal Conductivity0.69 W/m·KASTM D5470
Coefficient of Thermal Expansion (CTE)11 ppm/°C (x, y) / 32 ppm/°C (z)-55°C to 288°C
Glass Transition Temperature (Tg)>280°C (no defined Tg)Thermomechanical analysis
Decomposition Temperature (Td)~425°CTGA method
Solder Reflow ResistanceExcellentNo delamination or blistering
Tensile Modulus1.4 × 10⁶ psi (x-y)ASTM D638
Flexural Strength20,000 psi (typical)ASTM D790
Peel Strength≄1.1 N/mmIPC-TM-650
Young’s Modulus~10 GPaEstimated from stress-strain curve
Moisture Absorption0.06%ASTM D570
Density1.86 g/cmÂłASTM D792
Flammability RatingUL 94 V-0UL 94
Water Absorption<0.1%Excellent water resistance
Material CompositionCeramic-filled hydrocarbon resin + glass fiberNon-PTFE-based
Halogen-FreeYesRoHS & REACH compliant
Available Copper Foil0.5 oz, 1 oz, 2 oz (18”m, 35”m, 70”m)Rolled and electro-deposited options available

If you need the full official datasheet in PDF format, you can also request it from Best Technology along with a quote for your project.

How Much Does Rogers PCB Cost?

Compared to FR-4, the rogers RO4350B price is higher due to its premium performance. On average, RO4350B material can cost between $8 to $25 per square foot, depending on thickness, copper weight, and supplier volume. Full PCB fabrication using RO4350B typically results in a 20–50% higher price than using standard FR-4, mainly due to the material cost and additional processing steps.

However, when you’re working with high-frequency applications—such as 5G, radar, or satellite communications—the improved signal integrity and reduced loss often justify the added cost.

What Is the Difference Between RO4003 and RO4350B?

Both RO4003 and RO4350B are part of Rogers’ high-frequency laminate series, but they have subtle differences:

FeatureRO4003CRO4350B
Dielectric Constant3.383.48
Loss Tangent0.0027 @ 10 GHz0.0037 @ 10 GHz
Flame RatingNon-UL ratedUL 94 V-0
CostSlightly lowerSlightly higher
Process CompatibilityStandard PCB processStandard PCB process

RO4003 is better suited for applications where cost sensitivity is critical and UL rating is not required. RO4350B, on the other hand, provides a better flame rating and slightly improved mechanical properties, so it is the preferred choice for commercial or defense-grade applications.

Why Choose RO4350B as High Frequency PCB Material?

High frequency PCB, also known as RF PCB, refers to a special circuit boards with relatively high electromagnetic frequencies. This PCB is mainly used in the fields of high frequency (>300 MHz or wavelengths <=1 meter) and microwaves (>3 GHz or wavelengths <= 0.1 meter). If you’re designing a high-frequency PCB, choosing RO4350B gives you the best of both worlds: high performance and ease of fabrication. Here’s why many engineers choose this material:

  • Low dielectric loss helps reduce signal attenuation.
  • Stable dielectric constant ensures consistent impedance.
  • Better thermal management compared to FR-4.
  • UL 94 V-0 flame resistance, which is crucial for safety.
  • Compatible with standard FR-4 processing, so no need for Teflon-specific tooling.

All of these feature help maintain signal quality in applications like RF transmitters, satellite receivers, and high-speed digital circuits. So even if the RO4350B price is slightly higher, it’s often more cost-effective than debugging performance issues caused by suboptimal materials.

Why Choose RO4350B as High Frequency PCB Material?

High Frequency PCB Design Guidelines

When working with RO4350B PCB material, keep the following design practices in mind to get the best results:

1. Control impedance: Use proper stack-up and trace width calculators for accurate 50Ω or 75Ω routing.

2. Minimize vias: Each via introduces inductance and can distort signals at high frequencies.

3. Short trace lengths: High-speed signals should have the shortest possible paths.

4. Proper grounding: Always include a continuous ground plane to reduce EMI and improve return paths.

5. Avoid sharp corners: Use 45-degree or curved traces instead of 90-degree angles.

6. Use differential pairs: For high-speed interfaces like USB or LVDS, tightly coupled pairs reduce crosstalk and maintain signal integrity.

Combining these techniques with the natural performance of RO4350B helps you unlock superior RF performance without increasing fabrication complexity.

Why Best Technology Is Your Reliable RF PCB Manufacturer?

At Best Technology, we specialize in high-frequency PCB manufacturing using premium materials like RO4350B, RO5880, RO4003C. With ISO-certifications, we’re equipped to serve industries ranging from automotive and medical to aerospace and communications. Whether you’re developing high-reliability prototypes or large-scale production, you can count on us as your reliable one-stop PCB & PCBA partner.

We offer:

  • Strict impedance control with advanced test equipment
  • Rapid prototyping and flexible volume production
  • Competitive RO4350B price with guaranteed traceability
  • Expert engineering support for layout and material selection
  • No MOQ requires, 1 piece available also
  • 5 years quality guarantee, free rework and functional testing
  • Free DFM check

If you’re looking to manufacture reliable high-frequency PCBs, you’re in the right place.

FAQs

1. Is RO4350B suitable for multilayer PCBs?

Yes, RO4350B is commonly used in multilayer designs for RF and microwave applications. It offers stable performance in both single and multi-layer stack-ups.

2. How does RO4350B perform at 5GHz or higher?

It maintains low loss and consistent Dk values even at frequencies above 5GHz, making it reliable for 5G and radar circuits.

3. Can RO4350B be used with FR-4 in hybrid stack-ups?

Yes, it can. Many engineers use RO4350B for RF layers and FR-4 for power/control layers to reduce cost.

4. What is the shelf life of RO4350B material?

Stored under proper conditions, it has a long shelf life—typically over a year without degradation.

5. Do I need special PCB fabrication for RO4350B?

No. Unlike PTFE-based materials, RO4350B is compatible with standard PCB fabrication processes, which simplifies manufacturing.

Contact Best Technology today to get a quote or talk with our engineers about your RF design needs.

ISOLA 370HR High Frequency PCB
Wednesday, July 2nd, 2025

Isola 370HR is a well-established choice for engineers who need a durable, high-frequency compatible PCB base material. Its high Tg, low loss, and excellent reliability make it suitable for everything from aerospace to telecommunications.

If you’re working on a complex design or RF application, switching to Isola 370HR PCB materials might be the upgrade you need. And with a reliable partner like Best Technology, you’re assured of quality from the first prototype to volume production.

ISOLA 370HR High Frequency PCB

What Is Isola 370HR Material?

Isola 370HR is a high-performance, high-Tg epoxy laminate and prepreg system developed by Isola Group. Designed specifically for multilayer printed circuit boards, it offers a great balance between electrical stability and thermal durability. It’s classified as a high-Tg FR4 material but provides better signal handling and thermal behavior compared to standard FR4.

Isola engineered this material for demanding sectors like telecommunications, data networking, and military electronics. Its low dielectric loss and stable performance across a wide frequency range make it suitable for modern high-speed circuits.

Advantages of Using Isola 370HR in PCB Manufacturing

Choosing Isola 370HR for your PCB manufacturing brings several key benefits that directly impact the performance and reliability of your finished products:

  • Superior Thermal Stability: With a high glass transition temperature (~180°C), Isola 370HR withstands the high temperatures of lead-free soldering and multiple reflow cycles without warping or delamination.
  • Low Dielectric Loss: This material minimizes signal loss at high frequencies, making it perfect for RF circuits and high-speed digital designs.
  • Excellent Signal Integrity: Stable dielectric constant (Dk) across frequency ranges means consistent signal propagation and reduced timing errors.
  • Enhanced Moisture and CAF Resistance: Improved resistance to moisture-induced failures helps maintain long-term reliability, especially in humid or harsh environments.
  • Dimensional Stability: Reduced Z-axis expansion ensures layers stay aligned during manufacturing and operation, critical for multilayer PCBs.
  • IPC Compliance: Isola 370HR meets rigorous industry standards, ensuring compatibility with demanding aerospace, automotive, and medical applications.
  • RoHS and Environmental Compliance: Fully compliant with environmental regulations, supporting green manufacturing practices.
Advantages of Using Isola 370HR in PCB Manufacturing

ISOLA 370HR Datasheet

PropertyTypical ValueTest Method / Notes
Glass Transition Temperature (Tg)180°C (DSC)Differential Scanning Calorimetry
Decomposition Temperature (Td)>340°CTGA (Thermogravimetric Analysis)
Dielectric Constant (Dk)4.04 @ 1 GHzIPC-TM-650 2.5.5.5
Dissipation Factor (Df)0.0127 @ 1 GHzIPC-TM-650 2.5.5.5
Coefficient of Thermal Expansion (CTE)15 ppm/°C (X-Y), 65 ppm/°C (Z)IPC-TM-650 2.4.24
Thermal Conductivity0.4 W/m·KASTM E1461
Tensile Strength24,000 psiIPC-TM-650 2.4.18
Flexural Strength32,000 psiIPC-TM-650 2.4.4
Water Absorption<0.10%IPC-TM-650 2.6.2.1
Flammability RatingUL 94 V-0UL 94
Copper Peel Strength>1.0 lbs/inchIPC-TM-650 2.4.8
Surface Resistivity>1×10^6 ohmsASTM D257
Volume Resistivity>1×10^9 ohm-cmASTM D257
Dielectric Breakdown Voltage>50 kV/mmIPC-TM-650 2.5.6

What Is the Difference Between FR4 and 370HR?

While both standard FR4 and Isola 370HR are epoxy-based materials widely used in PCB manufacturing, they differ significantly in performance—especially when it comes to high-speed and high-frequency applications.

Standard FR4 is the go-to material for many general-purpose PCBs. It offers decent mechanical strength, good manufacturability, and cost-effectiveness for everyday electronics. However, its glass transition temperature (Tg) typically ranges from 130°C to 140°C, and it has relatively higher dielectric loss (Df). These limitations can cause signal degradation and reliability issues in circuits operating at higher frequencies or elevated temperatures.

In contrast, Isola 370HR is a high-Tg FR4 variant designed to meet the demands of more challenging environments. Its Tg is around 180°C, which provides superior thermal stability during lead-free soldering and extended use in high-temperature settings. More importantly, it exhibits a lower dielectric constant (Dk) and dissipation factor (Df), which translates to lower signal loss and better signal integrity at microwave and radio frequencies.

What Is the Difference Between FR4 and 370HR?

Why Isola 370HR PCBs Are Suitable for High Frequency Applications?

As electronic devices evolve to support faster data rates, the performance of PCB materials under high-frequency conditions has become a serious concern. This is where Isola 370HR PCB materials shine.

Its consistent dielectric constant (Dk) and low dissipation factor (Df) ensure that high-frequency signals do not lose strength or become distorted. That’s a major reason why 370HR is used in:

  • Gigabit Ethernet systems
  • High-speed backplanes
  • Automotive radar systems
  • Satellite communications
  • Advanced test equipment

Its ability to handle GHz-level signals without distortion helps maintain data accuracy and reduces EMI-related issues.

When to Choose Isola 370HR Material for Your PCB?

You might consider Isola 370HR when your design falls into any of the following categories:

High-speed or RF designs: If your circuit runs at over 1 GHz, this material can preserve signal quality.

  • Multilayer PCBs: When stacking 8 or more layers, 370HR offers great registration control and stability.
  • Thermal stress tolerance: It performs reliably through multiple reflow cycles and temperature extremes.
  • CAF-resistant needs: Ideal for products exposed to moisture or long-term outdoor use.
  • Strict industry compliance: It meets IPC-4101/126 and 129, as well as UL and RoHS requirements.

Choosing this material isn’t just about performance—it’s about peace of mind over the product’s lifecycle.

When to Choose Isola 370HR Material for Your PCB?

How to Identify Genuine Isola 370HR PCB Material?

To avoid counterfeit materials or unverified substitutions, it’s important to:

  • Request the original datasheet with the Isola logo and batch number.
  • Check board markings for Isola brand identification or laminate codes.
  • Work with certified suppliers who purchase directly from Isola or its authorized distributors.
  • Ask for certification documents, especially if your application is regulated by aerospace or medical standards.
  • Genuine Isola 370HR PCB materials ensure consistency in production and performance.

Typical Applications of Isola 370HR in PCB Design

Here are common industries and devices where Isola 370HR is frequently used:

  • Telecommunications: High-speed switches, routers, and fiber optic systems.
  • Aerospace and Defense: Radar, avionics, satellite boards.
  • Medical Equipment: Imaging devices, patient monitoring systems.
  • Automotive: Advanced driver-assistance systems (ADAS), LiDAR modules.
  • Industrial Automation: Motor controls, power management systems.

Designers across these sectors rely on its thermal reliability and signal control to reduce field failures.

What Is the Equivalent of Isola 370HR?

While Isola 370HR is a preferred material, there are other options that offer similar characteristics. Here’s how some alternatives compare:

Material NameTg (°C)Df @ 1GHzNotable Feature
Nelco N4000-13EP~180~0.013Known for stability
Panasonic MEGTRON 6~185~0.0025Ultra-low loss, but expensive
Ventec VT-47~180~0.014Cost-effective option

If you need better electrical performance than 370HR, MEGTRON 6 is a great choice. For general high-frequency use with cost control, 370HR remains the most balanced option.

Why Choose Best Technology for Isola 370HR PCB Manufacturing?

With over 18 years of experience in printed circuit boards and as one of the leading PCB manufacturers, we support over 1,000 customers in different industrial areas worldwide. You can count on a PCB board manufacturer like us to meet your one-stop electronics manufacturing demands.

We are your one-stop PCB manufacturer in China who can meet all your diversified PCB requirements. We have an experienced engineering, production, and quality team that fully understands the unique needs of your industry—especially in medical, automotive, and aerospace applications. As a printed circuit board manufacturer, we always follow the most widely accepted standards in the industry: IPC-A-600 for fabrication and IPC-A-610 for PCB assembly. All our products meet IPC Class 2 by default, and we can also meet Class 3 or 3A when your application requires it.

If you have any questions about our products, services, pricing, lead times, quality control, certifications, or technical support, please feel free to contact us anytime. Our goal is to be one of the best PCB manufacturers in China, offering exceptional quality, fair pricing, and professional service.

FAQs

1. Is Isola 370HR good for RF applications?

Yes, it offers low dielectric loss and stable Dk, perfect for high-frequency circuits.

2. How is Isola 370HR different from standard FR4?

It has higher Tg, better thermal stability, and lower signal loss.

3. What industries use Isola 370HR PCB materials?

Telecom, automotive, aerospace, medical, and industrial electronics.

4. Can Isola 370HR support lead-free assembly?

Yes, it’s fully compatible with RoHS and lead-free soldering processes.

5. Where can I get a quote for Isola 370HR PCB fabrication?

Contact Best Technology for fast, custom quotes and expert support.

PCB Routing Angle Rules: 45-Degree Angle Vs 90-Degree Angle
Tuesday, July 1st, 2025

In PCB layout design, routing angles have a direct impact on signal integrity, manufacturing quality, and overall board performance. The two most common routing angles—45-degree and 90-degree—have long been debated among engineers and designers. While both have their uses, the choice between them depends on electrical performance, fabrication processes, and design goals.

This blog explores the differences between 45-degree and 90-degree routing angles. We’ll break down how each angle affects your board’s reliability, signal flow, and manufacturability. You’ll also get practical insights into when and why to choose one over the other.

PCB Routing Angle Rules: 45-Degree Angle Vs 90-Degree Angle

Why Routing Angles Matter in PCB Design?

Routing angles may seem like a minor detail, but they carry more weight than you might expect. When copper traces change direction sharply, it impacts how current flows through the circuit. This is especially critical for high-speed and high-frequency designs. Uneven trace transitions can cause reflections, impedance discontinuity, and even signal degradation.

Aside from performance, routing angles influence how easy it is to manufacture, etch, and inspect the board. Smooth routing not only helps the signals but also improves the final product’s consistency and durability.

What Is a 90-Degree Routing Angle?

A 90-degree angle in PCB routing refers to a sharp right-angle corner where a trace takes a turn. It is often called a right-angle bend and used mostly in older or simpler PCB layouts.

Characteristics:

  • Easy to draw and route.
  • Common in low-frequency, analog, or single-layer PCBs.
  • Produces a clear, angular look on CAD tools.

Despite its simplicity, the 90-degree bend has downsides when it comes to electrical performance and manufacturing precision, which we’ll explore in detail later.

What Is a 45-Degree Routing Angle?

A 45-degree angle is a more gradual, beveled bend in PCB traces. Instead of a sharp corner, the trace changes direction at an angle, forming a smoother path. Some layouts even use two 45-degree bends to make a soft curve.

Characteristics:

  • Smoother current flow.
  • Reduced signal reflection.
  • Preferred for high-speed and high-frequency circuits.
PCB Routing Angle Rules: 45-Degree Angle Vs 90-Degree Angle

Many modern CAD tools default to 45-degree routing due to its positive effect on signal integrity and trace etching quality.

Main Differences Between 45-Degree and 90-Degree Angles

Feature45-Degree Angle90-Degree Angle
Signal IntegrityBetter, due to smooth transitionsWorse, due to corner reflections
EMI/EMCLower emissionsHigher emissions
ManufacturingEasier to etch; fewer defectsEtch traps can form at corners
Trace LengthSlightly longerShorter, more direct
CAD ComplexitySlightly harder to route manuallyVery easy to route
Aesthetic & ProfessionalismIndustry standard for high-speedLooks dated in modern designs

Why 90-Degree Angles Can Be a Problem?

1. Impedance Discontinuity

Sharp corners create impedance mismatches that disrupt uniform signal travel. This is especially noticeable in controlled impedance traces, where precision is key. Signal reflection at a 90-degree turn can distort waveforms and cause errors in communication lines.

2. Electromagnetic Interference (EMI)

A sharp angle acts like a small antenna. This increases electromagnetic emissions, which may lead to your product failing EMI compliance tests. It also raises the risk of cross-talk in dense layouts.

3. Etching Defects

During fabrication, etching around a sharp 90-degree corner can cause acid traps, where chemical etchants get stuck and over-etch the copper. This can weaken the trace or cause open circuits.

4. Signal Reflection

Right-angle bends can cause signal reflection and ringing, particularly at high frequencies. This distorts the signal waveform and affects timing, which is critical in fast digital or RF systems.

Why 45-Degree Routing Is Widely Used?

The use of 45-degree routing in PCB design has become a standard practice in the industry. While older layouts sometimes featured sharp 90-degree angles for simplicity, most modern PCB designs now adopt 45-degree bends. Below are the key factors that explain why 45-degree routing is widely used.

Why 45-Degree Routing Is Widely Used?

1. Smoother Signal Transitions

In high-speed PCB designs, signal integrity is everything. Signals travel along copper traces like waves, and any abrupt direction change can reflect or distort the waveform. A 90-degree corner creates a sudden path change, which introduces a small but sharp discontinuity.

2. Lower Electromagnetic Interference (EMI)

Electromagnetic interference (EMI) is a growing concern in today’s electronics, especially in wireless and communication systems. Sharp trace corners such as 90-degree bends tend to behave like antennas. They concentrate electric fields and can emit higher levels of radiation, contributing to EMI. Designs that follow 45-degree routing are more likely to pass EMI compliance tests and meet international standards for electromagnetic compatibility.

3. Improved Manufacturability

From a manufacturing point of view, sharp corners can introduce several problems. During the etching process, chemical etchants used to remove unwanted copper may get trapped in 90-degree corners. These are known as acid traps. They can lead to over-etching, where too much copper is removed, or even undercutting, which weakens the trace at the bend.

4. Better Heat Distribution

Although routing angles don’t directly affect thermal conductivity, trace shapes can influence heat flow, especially in power boards. Smooth traces, like those formed with 45-degree bends, allow more even heat distribution along the path. Sharp corners may act as stress points where heat can build up, potentially weakening the copper over time.

5. Supports High-Speed and RF Design Standards

High-speed digital and RF designs demand strict control over trace geometry, impedance, and layout structure. In such designs, even minor trace irregularities can lead to signal degradation, noise coupling, or timing issues. Most high-speed PCB design guidelines—such as those for DDR memory, USB 3.0, HDMI, or RF transceivers—explicitly discourage the use of 90-degree angles.

How to Avoid 90-Degree Angles in PCB Design?

Most PCB layout software supports angle snapping, which makes it easy to design 45-degree routes. Here are a few tips:

  • Use 45-degree snap mode in your routing tool.
  • Use arc routing for smoother transitions in sensitive areas.
  • Double-bend technique: Instead of a single 90-degree, use two 45-degree bends to redirect the trace.

Check your DRC (Design Rule Check) for right-angle warnings if available.

PCB CAD Tools That Help With Angle Rules

CAD SoftwareRouting Features
Altium Designer45-degree snap, arc routing, right-angle DRC checks
KiCadPush-and-shove routing with 45-degree control
EAGLEAdjustable angle routing; user can disable 90-degree
OrCADPrecision routing tools for high-speed design
EasyEDASnap-to-45 built-in, ideal for quick layouts

Industry Standards and Best Practices

Several industry guidelines recommend using 45-degree angles, especially for high-speed circuits. Some key takeaways:

  • IPC standards encourage smooth trace transitions.
  • Many RF and microwave design rules prohibit 90-degree bends.
  • Professional board reviewers often flag right angles as poor practice.

Following these standards doesn’t just improve performance—it also gives clients and manufacturers confidence in your designs.

Common Myths About Routing Angles

Myth 1: 90-Degree Bends Always Break the Signal

Not always. If you’re working with low-speed signals or power lines, the impact is negligible. The problem grows with frequency, edge rate, and sensitive signals.

Myth 2: 45-Degree Routing Takes More Space

It may take a tiny bit more space, but not enough to justify poor signal integrity. Most modern designs can accommodate 45-degree bends with minor effort.

Myth 3: 90-Degree Angles Are Cheaper to Fabricate

Not true. They can actually increase manufacturing costs due to over-etch risks or inspection failures.

Why Choose Best Technology for PCB Design and Manufacturing?

At Best Technology, we go beyond just making PCBs. We help you design better boards from the start. Whether you’re routing high-speed digital signals or managing dense analog layouts, our engineering team follows best practices—including angle rules—to improve your product’s performance.

We are certified under ISO9001, ISO13485, IATF16949, and AS9100D, with an MES system that ensures traceability and quality control. We specialize in both standard and complex PCB manufacturing, including HDI, RF, and metal-core designs.

Contact Us Today

If you need help with routing strategy or want high-quality PCB production, our team is ready. From prototype to volume production, we can support your needs with fast delivery, quality control, and engineering guidance.

📩 Reach out now to get your quote and talk to our experts.

FAQs

1. Do 90-degree angles always cause EMI issues?

Not always. At low frequencies, the impact is minimal. But in high-speed or RF designs, they can be problematic.

2. Is 45-degree routing mandatory for all traces?

It’s not mandatory, but it’s highly recommended for signal traces, especially in complex or fast designs.

3. Can I use rounded corners instead of 45-degree angles?

Yes. Rounded corners are even better for very high-speed signals but may increase layout complexity.

4. Are 90-degree bends allowed in power planes?

Yes. Since power planes don’t carry high-speed signals, 90-degree turns are generally safe there.

5. How can I check for right angles in my layout?

Use your PCB tool’s DRC (Design Rule Check) to scan for sharp angles or manual review if needed.

Happy 19th Anniversary to Best Technology!!!
Monday, June 30th, 2025

Last Saturday, Jun 28th, 2025, we are thrilled to celebrate the 19th anniversary of Best Technology both in our factory and office. It has been an inspiring journey of innovation, perseverance, and continuous growth since our company was officially established on June 28, 2006, in Hong Kong. What started as a small team with a single product line has now become a leading printed circuit board (PCB) and assembly service provider trusted by hundreds of global customers.

Our Growth Capability

In the early days, Best Technology focused on producing metal dome switches, with only one staff member and a very small office. Our scale was small, but our vision was big: to become a reliable, long-term PCB manufacturing partner that values quality, precision, and speed.

As time passed, our capabilities matured. We gradually expanded our product lines from metal domes to FR4 PCBs, Heavy Copper PCBs, Flexible Circuits (FPC), Rigid-Flex PCBs, Metal Core PCBs (MCPCBs), Ceramic PCBs and built a SMT factory, aiming to provide customer with one-stop service. Today, we are proud to support a wide range of industries including automotive, medical, aerospace, LED lighting, industrial control, power electronics, and many more.

Solid Team Backed us

One of our most valuable assets is our people. From a single founder Peter to a dedicated team of over 100 skilled professionals, our growth has been powered by individuals who care deeply about every board we produce. Most of our engineers and production staff have over 10 years of experience, enabling us to tackle even the most complex and high-precision PCB projects. Here are some our office staff.

To support increasing demand and advanced technical requirements, we’ve continually invested in state-of-the-art production equipment and testing instruments. Today, we operate dozens of machines that help us deliver:

  • 20 OZ heavy copper PCBs
  • 4-layer metal core PCBs
  • High-frequency Rogers and Taconic boards
  • Controlled impedance multilayers
  • Quick-turn prototypes within 24 hours

With over 260,000 square feet of monthly production capacity and a strict ISO9001, ISO13485, IATF16949, and AS9100D certified quality system, we ensure our boards meet the highest international standards.

Growing Together with Global Customers

As we’ve grown, so has our customer base. From serving a handful of clients locally, we now support hundreds of customers across Asia, Europe, North America, and Oceania. Many of our customers are long-term partners who appreciate our fast delivery, consistent quality, and professional engineering support.

We are especially proud to have built strong relationships with companies in medical electronics, military and defense systems, communication devices, and green energy products, helping them bring reliable and high-performance solutions to market.

We Offer Turnkey PCB Solutions

Best Technology is not just a PCB manufacturing. We’re a one-stop solution provider. Over the past 19 years, we’ve expanded our services to include:

  • PCB duplication and layout
  • Engineering and process design
  • Component sourcing and BOM management
  • In-house SMT and DIP assembly
  • Full system integration and final product assembly

This comprehensive capability allows us to assist customers from initial concept to final product shipment, saving them time, cost, and communication hassle.

Looking Back with Pride, Looking Ahead with Confidence

Nineteen years may sound like a long time, but for us, this is only the beginning. With each passing year, we’ve learned, improved, and evolved. From manual operations to fully digitized and MES-monitored workflows, from domestic sales to a global footprint, Best Technology has transformed into a modern, competitive, and customer-focused enterprise.

We are grateful to every employee who contributed to our growth, and to every customer who chose to trust us. Your continued support is the reason we are here today, celebrating this special milestone.

As we look forward to the future, we remain committed to:

  • Continuous innovation
  • Advanced manufacturing capabilities
  • Rigorous quality control
  • Flexible and responsive customer service

Thank You for Being Part of Our 19-Year Journey

We believe that the best is yet to come. As we step into our 20th year, we invite you to grow with us, explore new ideas together, and build even stronger partnerships.

Whether you need standard FR4 PCBs, high-power heavy copper boards, high-frequency circuits, or custom PCB assembly solutions — Best Technology is always ready to be your reliable manufacturing partner.

👉 Have a project in mind? Contact us today to find out how we can help bring your vision to life.

Happy 19th Anniversary to all of us at Best Technology!

Printed circuit board switches, PCB dome switch
Thursday, June 26th, 2025

Printed circuit board switches (PCB switches) are an integral component in electronic devices that allow current to flow or be interrupted in a circuit. Among them, PCB dome switches offer crisp tactile feedback, high reliability, and easy integration, making them ideal for everything from consumer devices to industrial panels.

Printed circuit board switches, PCB dome switch

What is a PCB switch?

PCB switch is a control device mounted on a printed circuit board. It allows users to interact with electronics through simple actions. Turning a device on, changing a setting, or starting a function often happens with a PCB switch.

They come in various forms. Some are tactile. Others are soft-touch. Some are designed for heavy use. All types share a goal: precise, responsive user input.

Small in size, PCB switches deliver big performance. Their design ensures low-profile, efficient operation across many devices.

How does a printed circuit board switches work?

PCB switches complete circuits when pressed. Two contacts inside the switch touch, allowing current to flow. This flow sends a signal to the device’s processor. Once released, the contacts separate and the signal stops.

Some switches use rubber or plastic materials. Others use metal domes. No matter the type, the process is consistent. They translate physical action into digital output.

What are circuit board switch types?

There’s a wide range to explore. Some of the most common circuit board switch types include:

  • Tactile switches: These give a distinct click when pressed. Perfect for user interfaces.
  • Toggle switches: Often found in industrial settings, they flip between states.
  • Push button switches: Simple and efficient. Often used in consumer electronics.
  • Slide switches: Move side-to-side to open or close a circuit.
  • Rotary switches: Used for controlling devices with multiple options.
  • Membrane switches: Flat and sealed, ideal for wet or dusty environments.
  • Dome switches (including metal domes): Deliver tactile feedback and durability.
Printed circuit board switches, PCB dome switch

Each type serves specific purposes. Some are built for rugged use, others for sleek designs.

How do you choose PCB switch types?

Choosing the right switch isn’t just about size. It’s about function, environment, and experience.

First, consider the application. Is it for a wearable or a medical device? Does it need water resistance or high responsiveness?

Next, focus on the feel. Tactile feedback can enhance user satisfaction. For example, a solid click feels more secure than a mushy press.

Durability is key. If your product requires millions of cycles, dome switches or metal dome are top contenders.

Mounting style also matters. Surface-mount technology (SMT) is ideal for automated processes. Through-hole switches are better for heavy-duty usage.

Lastly, never ignore cost versus performance. Striking the right balance ensures both user happiness and budget control.

Where are PCB switches used?

Everywhere. They’re found in:

  • Smartphones and tablets
  • Wearable fitness trackers
  • Automotive dashboards
  • Medical monitoring equipment
  • Consumer appliances
  • Industrial controls
  • Gaming consoles and controllers
  • Smart home devices
Printed circuit board switches, PCB dome switch

PCB switches keep our devices functional, responsive, and enjoyable to use. Without them, even the most advanced system becomes difficult to operate.

What is a PCB dome switch?

PCB dome switch is a special kind of tactile switch. It uses a metal dome to complete a circuit. When pressed, the dome collapses and bridges the contacts underneath.

The beauty lies in its simplicity. When released, the dome returns to shape, breaking the connection. This mechanism ensures long-lasting reliability and quick response times.

Metal domes are especially favored for their sharp tactile feel. Users feel that satisfying “snap” which confirms the input was registered.

Why use metal domes for circuit board switches?

Metal domes offer a blend of sensitivity and strength. Their advantages include:

  • Crisp tactile feedback: Users know exactly when a button is pressed.
  • High durability: Many domes last over 1 million cycles.
  • Slim profile: Ideal for sleek, compact designs.
  • Fast response: Instant signal when activated.
  • Corrosion-resistant: Especially when made from stainless steel.

Metal domes work across different applications. Whether in medical gear or touch panels, they perform consistently. They also resist wear and temperature shifts. That’s why they are used where precision matters.

How is a metal dome switch different?

Metal domes outperform rubber and membrane layers in many areas.

Unlike membrane switches that rely on pressure-sensitive layers, metal dome switches use a physical component to create contact. This makes them more tactile, with less chance of accidental activation.

Compared to rubber domes, metal domes are more consistent. They don’t degrade as fast and hold up under heavy use.

Also, metal dome switches are cleaner. There are fewer moving parts and minimal debris generation. In critical fields like medical and aerospace, this matters.

How do metal dome switches work on PCBs?

Metal domes sit over circuit contacts. It may sit on a spacer or adhesive film or held within a dome array.

When pressed, the dome collapses. It connects the circuit beneath. Release it, and the dome returns to shape. This makes and breaks the signal.

Dome arrays make installation easier. Each dome aligns with its PCB contact. Assembly becomes fast and accurate.

Printed circuit board switches, PCB dome switch

These switches support mass production. SMT machines can place them quickly. You can also fine-tune dome properties—like snap force and shape.

Conclusion:

Printed circuit board switches are at the heart of modern electronic control. From standard tactile switches to high-performance metal domes, these components create that essential connection between people and machines.

Among all the options, PCB dome switches—especially metal dome switches—stand out for their tactile feel, durability, and reliability. They’re the preferred choice when performance and user experience matter most.

For more information or to request samples, contact us today at sales@bestpcbs.com

How does PCB Etching Process Work?
Friday, June 20th, 2025

Etching is one of the most critical steps in making a printed circuit board (PCB). It’s the process that removes unwanted copper, leaving behind clean circuit traces. Whether you’re building PCBs for new projects or manufacturing at scale, understanding how PCB etching works helps you get better quality and fewer production issues.

At Best Technology, we specialize in high-precision PCB fabrication. From prototype to volume production, our team follows strict quality standards to ensure high quality PCBs. Now let’s take a closer look at the PCB etching process.

What Is PCB Etching?

PCB etching is the process of removing excess copper from a copper-clad board to form the desired circuit pattern. It’s typically done after the copper layer has been covered with an etch-resistant mask, which protects specific areas during etching. Only the unprotected copper is dissolved away by the etchant solution.

Etching creates the circuit traces that connect electronic components. If done improperly, you could end up with broken traces, short circuits, or unreliable connections. That’s why it’s important to understand the entire process before getting started.

What Is PCB Etching?

What Liquid Is Used for PCB Etching?

Several chemical solutions are commonly used for PCB etching, depending on the production scale and copper thickness. The most frequently used liquids include:

  • Ferric Chloride (FeCl₃): A traditional etchant used for simple or hobby PCBs. It’s affordable but stains and is hard to dispose of.
  • Ammonium Persulfate (NH₄)₂S₂O₈: Produces cleaner results with less mess. Suitable for small-scale production.
  • Cupric Chloride (CuCl₂): Common in industrial PCB etching lines. It offers consistent results and can be regenerated for reuse.
  • Alkaline Etchants: These are used in professional PCB shops. They provide high-speed etching and better line resolution.

Each etchant has different properties, such as etch rate, temperature sensitivity, and compatibility with resists. Industrial PCB manufacturers often choose the one that best matches their line width, copper thickness, and environmental compliance standards.

What Materials Are Needed for PCB Etching?

Before starting the etching process, you’ll need the following materials:

  1. Copper-clad laminate: This is the raw board, coated with a thin layer of copper.
  2. Etching solution: Ferric chloride, cupric chloride, or another chemical agent.
  3. Etch-resistant layer: Typically photoresist or screen-printed resist to mask the pattern.
  4. Developer solution (if using photoresist): Helps reveal the resist pattern before etching.
  5. Protective gear: Gloves, goggles, and fume protection to handle chemicals safely.
  6. Etching tank or tray: For submerging and processing the boards evenly.
  7. Agitation system: Helps improve etching speed and consistency (manual or automatic).
  8. Rinse station: To stop the chemical reaction after etching and remove residues.

These materials work together to protect the circuit pattern and remove unwanted copper with high precision.

What Materials Are Needed for PCB Etching?

PCB Etching Process

The PCB etching process is one of the core steps that transforms a copper-clad laminate into a functional printed circuit board. It defines the copper traces that carry electrical signals between components. The goal of etching is to remove all the unwanted copper from the board, leaving only the copper paths protected by a resist layer.

1. Surface Preparation

Before etching begins, the copper surface must be completely clean and free of oxidation or oil. Any contamination can prevent the resist from adhering properly. Most manufacturers use mechanical scrubbing or chemical cleaning (like acid dipping) to ensure a uniform surface.

2. Applying the Resist Layer

Once the board is clean, a protective layer called a resist is applied to mask the areas that should not be etched. There are several ways to apply the resist:

  • Dry film photoresist (DFR): Laminated using heat and pressure.
  • Liquid photoresist: Sprayed onto the board.
  • Screen printing: Used in simple or low-resolution PCBs.

For most precision PCBs, photoresist is preferred. It allows for fine line resolution and is compatible with automated processing.

3. Exposure and Developing

After resist application, the board is aligned with a phototool or artwork—a transparent film with the desired circuit pattern. The board is then exposed to UV light, which hardens the resist on the areas exposed to light. The rest remains soft.

The board is then placed in a developer solution, which removes the unhardened (unexposed) resist. This reveals the copper that will be etched away, while protecting the traces and pads under the hardened resist.

4. Etching

The board enters the etching chamber, where it’s sprayed or submerged with a chemical solution designed to dissolve exposed copper.

Depending on the production scale and PCB type, different etching systems are used:

  • Immersion etching: The board is dipped in an etchant bath. Simple but slower.
  • Spray etching: High-pressure nozzles spray etchant uniformly across the board, providing faster and more controlled etching.
  • Conveyorized etching machines: Used in mass production, offering precision and speed.

The most common etching chemicals at this stage include:

  • Alkaline cupric chloride (CuCl₂): Efficient and widely used in high-speed lines.
  • Ammoniacal etchant: Offers even faster etching, especially suitable for fine-line PCBs.

Etching is a time-sensitive process. Too short, and some copper remains. Too long, and the resist may lift, leading to undercutting or trace erosion.

PCB Etching Process

5. Etch Quality Control

Quality checks are crucial right after etching:

  • Line width and spacing inspection ensures the traces match the intended design.
  • Cross-section testing confirms the copper thickness is within tolerance.
  • Underetch detection helps avoid electrical shorts and performance issues.

High-end manufacturers like Best Technology use AOI (Automated Optical Inspection) machines to inspect every board for etch defects at this point.

6. Stripping the Resist

Once etching is complete, the remaining photoresist is no longer needed. It is removed using a chemical resist stripper, revealing clean, shiny copper traces.

This step prepares the board for further processing like solder mask application, drilling, or surface finish coating (such as ENIG or HASL).

7. Rinsing and Neutralizing

After stripping, the board goes through a thorough rinsing process using deionized water to remove any chemical residues. A neutralizing agent may also be applied to balance pH levels and prevent corrosion.

How Long Does It Take to Etch a PCB?

Etching time depends on several factors, like:

  • Copper thickness: Thicker copper layers take longer to etch.
  • Etchant concentration: Higher concentration speeds up the process.
  • Temperature: Warmer solutions increase the etch rate.
  • Agitation: Moving the solution or board improves uniformity and speed.

Typically, hobbyist etching using ferric chloride may take 10–30 minutes, while industrial alkaline etching can finish in 1–3 minutes with consistent results. Time control is critical—over-etching can lead to side-etching and weak traces.

Calculation Method for PCB Etching Factors

Professional PCB manufacturers use a formula to calculate the etch factor, which helps balance speed and precision. The etch factor (EF) is:

EF = Depth of Etch / Undercut Distance

A high etch factor means more vertical etching (cleaner sidewalls), while a low etch factor shows more lateral etching (side erosion). This factor helps adjust etchant chemistry and exposure settings.

Key parameters include:

  • Etchant type and strength
  • Temperature control
  • Agitation method
  • Line width and spacing
  • Copper thickness

By tuning these parameters, manufacturers can keep tight tolerances and maintain trace fidelity even on high-density PCBs like HDI boards.

What Should I Do if PCB Side Etching Occurs?

Side etching happens when the etchant cuts under the resist, reducing the trace width and weakening the circuit. It’s a common issue with long etching times or incorrect resist application.

To reduce or eliminate side etching:

1. Use proper photoresist application: Ensure full coverage and adhesion to the copper.

2. Optimize exposure and development times: Underdeveloped or overexposed resist can lift during etching.

3. Shorten etching duration: Use stronger etchants or increase agitation to reduce total etch time.

4. Improve etching directionality: Spray etching is better than immersion for fine features.

5. Apply protective overcoats: For high-precision PCBs, a hard-baked resist layer or dry film helps.

In production, engineers often run test coupons alongside real boards to monitor etch quality in real time.

Choose a Professional PCB Partner – Best Technology

At Best Technology, we handle complex PCB etching challenges with advanced production lines and tight quality control. We support everything from simple single-layer PCBs to multilayer HDI PCB, flexible circuits, and even ceramic-based PCBs. Our MES system tracks every board’s etching process for full traceability.

Whether you need prototype fabrication or mass production, we guarantee:

  • High etching precision
  • Clean edge definition
  • Minimal side etching
  • Consistent quality for fine-pitch circuits

Looking for a reliable PCB etching service? Contact Best Technology today and get your project started with confidence.

FAQs

1. What is the safest etchant to use at home?

Ammonium persulfate is cleaner and less messy than ferric chloride, though both require safety precautions.

2. Can I reuse PCB etching solution?

Yes, some etchants like cupric chloride can be regenerated, but they require careful chemical control.

3. What causes uneven etching?

Poor resist application, inconsistent agitation, or expired chemicals can lead to patchy etching.

4. How do I clean a PCB after etching?

Rinse with water, then clean with isopropyl alcohol to remove remaining residues before applying solder mask.

5. Is photoresist better than screen printing for masking?

Photoresist offers higher resolution and is preferred for fine-pitch or multilayer PCB designs.

PCB Board Price: How Much does a PCB Board Cost?
Wednesday, June 18th, 2025

When engineers start a new project or a graduating students want to complete a graduation project, one of the first questions they ask is: How much does a PCB board cost? The answer depends on several factors like size, layers, material, and whether assembly is included. Whether you’re prototyping or mass-producing, understanding PCB board price helps you budget better and avoid hidden costs. In this guide, we’ll break down the basics of pcb board price, answer some of the most common questions, and show how to save money without compromising on quality.

What Is the Difference Between a Circuit Board and a PCB?

Before break down the cost of PCB, let’s explain the difference between circuit board and a PCB. Although people often use the terms interchangeably, there’s a slight difference. A circuit board is a general term that can refer to any board used in an electronic device.

A PCB (Printed Circuit Board) is a specific type that uses conductive tracks etched onto a substrate, usually FR4 or ceramic. All PCBs are circuit boards, but not all circuit boards are PCBs. When we talk about pcb board price, we usually mean a professionally manufactured, layered board ready for component mounting.

PCB Board Price: How Much does a PCB Board Cost?

How Much Does PCB Cost Per Square Inch?

On average, the pcb board price per square inch ranges from $0.50 to $5, depending on the complexity and order size. For basic two-layer PCBs made in large volumes, the cost can be on the lower end. But for high-frequency, multi-layer, or specialty material boards, the price goes up.

PCB TypePrice Per Square Inch
Basic 2-layer FR4 PCB$0.50 – $1.00
4-layer PCB$1.50 – $2.50
6+ layer PCB$2.50 – $4.50
Ceramic or metal-core$3.00 – $5.00+

These prices vary by manufacturer, lead time, surface finish, and testing requirements.

What Factors Affect PCB Board Price?

Several factors play a critical role in determining the PCB board price, the most influential factors include:

1. Number of Layers

The more layers a PCB has, the higher the cost. A 2-layer board is relatively inexpensive to fabricate, but as you move to 4, 6, or even 10 layers, the complexity increases significantly. Each additional layer means more lamination cycles, drilling, and alignment steps.

2. Board Size and Shape

Larger boards use more material, which drives up the price. Unusual shapes that require non-standard routing also increase the manufacturing complexity, sometimes requiring custom tooling or manual cutting.

3. Material Selection

Standard FR4 is the most cost-effective material. However, specialty substrates such as ceramic, aluminum, polyimide, or Rogers laminates are much more expensive. These are often used for high-frequency or high-heat applications and add to the total cost.

4. Trace Width and Spacing

High-density designs with narrow traces and tight spacing require more precise manufacturing, which involves advanced processes and tighter quality control. That adds cost due to increased difficulty and possible yield loss.

5. Surface Finish

Finishes like HASL (Hot Air Solder Leveling) are economical, while others like ENIG, ENEIG and Immersion Silver add durability but come at a premium. The choice depends on the soldering process and environmental conditions.

6. Via Type and Count

Through-hole vias are cheaper, but blind and buried vias, microvias, or via-in-pad structures add extra drilling and lamination steps. These specialized vias are common in HDI (High-Density Interconnect) boards and push the cost higher.

7. Solder Mask Color

Green is standard and least expensive. Other colors such as red, black, white, or blue may cost slightly more. Clear or custom colors are rare and usually priced higher.

8. Turnaround Time

Shorter lead times often require priority in the production queue and overtime labor, which increases costs. Standard production schedules offer better pricing if you’re not in a rush.

How Much Does PCB Assembly Cost?

PCB board price doesn’t include assembly unless specified. PCB assembly (PCBA) adds labor, equipment use, and component sourcing into the cost. On average:

  • Simple boards (fewer than 50 components): $5 – $20 per board.
  • Medium complexity: $20 – $30 per board.
  • High complexity or low volume with many components: $30+ per board.

For large runs, the price drops significantly, often down to a few dollars per board for simple designs. Using turnkey assembly (where the manufacturer handles everything) is usually cheaper in bulk.

PCB Board Price: How Much does a PCB Board Cost?

How to Reduce PCB Cost on Printed Circuit Boards?

Here are some proven ways to bring down your pcb board price without sacrificing quality:

1. Design with standard board sizes, FR4 material, and common thickness (1.6mm) to avoid customization fees.

2. Reduce the number of layers if possible. Reusing reference designs or optimizing layout to avoid unnecessary complexity can significantly lower manufacturing costs.

3. If you’re ordering small PCBs, ask your manufacturer to panelize multiple boards in one larger sheet. This can improve production efficiency and reduces per-unit costs.

4. Unless you need advanced protection or plan multiple soldering cycles, HASL can be a suitable and affordable finish.

5. Reducing the number of different drill sizes simplifies the manufacturing process and lowers setup costs.

6. High-volume production significantly lowers the cost per unit. If you can predict demand, batch your orders for better pricing.

Working with an experienced and flexible PCB manufacturer like Best Technology allows you to get valuable feedback on cost-saving opportunities without compromising functionality. We provide full DFM checks to avoid rework costs.

How to Choose a PCB Board?

Choosing the right PCB for your project helps ensure reliability while controlling the pcb board price. Here’s what to consider:

1. Application Requirements

If you’re working on a consumer product, a standard FR4 board will do. But for high-power LEDs, RF circuits, or automotive electronics, you may need special materials like Rogers, Dupont.

2. Electrical Performance

Check if your circuit demands controlled impedance, high-frequency transmission, or thermal management. The right material and layout will support this without unnecessary expense.

3. Size and Component Density

Tight spaces or miniaturized designs may require multi-layer boards or HDI technology. Choose your layer count based on how compact your design needs to be.

4. Budget and Volume

For low-volume projects, it’s often better to work with manufacturers who support small batch or prototype services. For production runs, choose a vendor that offers scalable pricing.

For most general electronics, a 2-layer FR4 PCB will do the job. But for high-power LEDs, RF applications, or miniaturized devices, materials like aluminum, ceramic, or Rogers laminates may be required. Consult with a professional PCB manufacturer like Best Technology to get a cost-effective and reliable solution tailored to your needs.

What Is the Most Common PCB Thickness?

The industry standard for PCB thickness is 1.6mm (0.063 inch). It offers good balance between mechanical strength and space savings. However, depending on application, PCBs can range from 0.4mm to over 3.2mm.

What Is the Most Common PCB Thickness?

Can I Make My Own PCB Board?

Yes, you can make a basic PCB at home using copper-clad boards and etching chemicals. But DIY boards are only suitable for low-frequency, non-critical applications. They lack the precision, durability, and reliability of professional boards.

If you need consistent performance, especially in multi-layer or fine-pitch designs, outsourcing to a PCB fabrication specialist is the best route. At Best Technology, we offer cost-effective PCB solutions with fast turnaround and tight quality control. Whether you’re prototyping or scaling up, our engineering team is here to help.

FAQs

1. Is it cheaper to order PCBs from China?

Yes. Many Chinese manufacturers like Best Technology offer excellent prices and quality due to economies of scale and efficient production lines.

2. Can I get a single PCB prototype made?

Absolutely. Many companies offer low-volume or single-piece orders for prototyping purposes.

3. Do PCB prices include components?

Not usually. PCB board price refers to the bare board. Assembly and components are charged separately.

4. Is ENIG finish worth the extra cost?

If you need better surface flatness, corrosion resistance, or plan multiple reflows, ENIG is a good investment.

5. What’s the lead time for PCB manufacturing?

Standard is 5–7 days. Express options range from 24 to 72 hours, depending on the manufacturer.

Assembling and Testing Electronic Components on a Small PCB
Thursday, June 12th, 2025

Assembling and testing electronic components on a small PCB is a critical process in electronics design and production. As electronic devices continue to shrink, the need for high-quality small PCBs grows rapidly. These boards are used in wearables, portable medical equipment, compact consumer gadgets, and more.

In this detailed guide, we’ll cover the most frequently asked questions about small PCB assembly and testing. You’ll learn the importance of miniaturized boards, how to handle the assembly process, and the various methods for reliable testing.

Why Are Small PCBs Important?

Small PCBs play a major role in modern electronics where compact size and lightweight form factors are essential. Whether it’s a smartwatch, fitness tracker, or smart home sensor, space is always limited. Miniaturized PCBs make it possible to fit complex electronic functions into these tiny enclosures.

But it’s not just about saving space. Small PCBs often improve signal integrity by reducing the length of signal paths. This is especially helpful in high-speed applications. Moreover, they reduce parasitic capacitance and inductance, which enhances performance in analog and RF circuits.

Additionally, small PCBs contribute to overall system efficiency. They use fewer materials, require less power, and simplify thermal management when designed properly. With all these advantages, it’s no surprise that assembling and testing small PCBs has become a specialized field in electronics manufacturing. Here is the main motherboard used in mobile phone:

How Do You Test a Small Circuit Board?

Testing a small circuit board involves several steps, each tailored to ensure functionality and identify defects before the board is installed in a final product. The key challenge lies in the limited real estate, which makes access and probing more difficult. Despite this, the following steps are commonly used:

1. Visual Inspection

Begin with a close-up inspection, using magnification tools or a microscope. You’re looking for:

  • Solder bridges
  • Tombstoned components
  • Incorrect polarities
  • Cracked or missing parts

2. Continuity and Resistance Checks

Use a multimeter to test for continuity along copper traces. Any open line could indicate a manufacturing error, such as an incomplete etch or a broken solder joint.

3. Power-On Testing

Once you’ve confirmed no shorts, apply power using a bench supply. Use a limited current setting to avoid damaging the board if something goes wrong. Confirm that voltage rails (e.g., 3.3V, 5V) match design specifications.

4. Functional Component Checks

Activate the board’s subsystems one at a time. For example, if there’s an LED or sensor, trigger them with known inputs and check the response.

5. Oscilloscope or Logic Analyzer

In digital systems, probe clock signals, data buses, and communication lines (like I2C, SPI, or UART). On analog boards, check waveform quality and frequency.

How to Assemble Electronic Components on a Small PCB?

Assembling electronic components on a small PCB involves precise coordination between manual work and machine automation. Small PCBs typically use surface-mount technology (SMT), though some through-hole components may still be involved. You can follow below steps to assemble components on your PCB.

1. Workspace Preparation

Ensure the working environment is ESD-safe. Use grounded wrist straps, antistatic mats, and proper lighting. A clean environment reduces contamination risks and improves soldering quality.

2. Stencil and Solder Paste Application

Use a laser-cut stencil to apply solder paste accurately on each pad. This ensures that components receive just the right amount of solder, which is critical for small pads.

3. Pick-and-Place Process

Surface-mount components are placed using tweezers (manual) or a pick-and-place machine (automated). For very small boards, the manual method is common in low-volume runs.

4. Reflow Soldering

After placement, the PCB passes through a reflow oven where the solder paste melts and solidifies, bonding the components securely. The reflow temperature profile must be carefully controlled.

5. Inspection and Touch-Up

Once soldered, the board is inspected under magnification. Cold joints, solder bridges, or shifted components are corrected using a fine-tip soldering iron or hot air tool.

6. Through-Hole Soldering (if applicable)

If your design uses connectors or switches, those are added next. Insert them into the board and hand-solder from the bottom side.

7. Final Cleaning

Any flux residue left after soldering should be cleaned with isopropyl alcohol or a PCB cleaning solution. This prevents corrosion and improves reliability.

How to Test Components on a PCB?

Once the PCB is assembled, testing individual components confirms they are working and properly connected. You don’t always have to remove parts from the board—many can be tested in-circuit.

Testing Common Components:

  • Resistors: Measure resistance values across the component with a multimeter.
  • Capacitors: Use a capacitance meter or LCR meter. Electrolytics should be tested for leakage or swelling.
  • Diodes/LEDs: Use diode mode to check forward voltage. LEDs will glow slightly if working.
  • Transistors: Use a component tester or check base-emitter junctions with a multimeter.
  • Integrated Circuits: For complex ICs, test power and ground pins, and validate input/output behavior using a scope.

Note: Some components may give inaccurate readings in-circuit due to parallel paths. If readings are questionable, desolder one leg and test again.

What Are the 7 Types of PCB Testing Methods?

1. Visual Inspection

Used in early quality checks. Technicians or AOI systems look for visible defects like misalignment, poor soldering, and missing parts.

2. In-Circuit Testing (ICT)

A bed-of-nails fixture probes test points across the PCB. It checks resistance, capacitance, and signal paths individually. Best for high-volume manufacturing.

3. Flying Probe Test

A non-fixture alternative to ICT. Probes move automatically to check test points. Suitable for prototypes and small production runs.

4. Functional Testing

Simulates real-world operation. Inputs are applied, and outputs are measured to ensure the board works as expected.

5. Boundary Scan Testing

Used for densely packed ICs like BGAs. Tests internal connections and inter-chip communication using a special interface (JTAG).

6. Burn-In Testing

Applies power for extended periods under stress conditions. Helps detect early-life failures or unstable components.

7. Automated Optical Inspection (AOI)

High-speed cameras scan the board for defects after assembly. AOI systems compare images to a golden board and flag mismatches.

How to Find a Bad Component on a Circuit Board?

Finding a faulty component on a small PCB is part detective work, part experience. Here’s a logical way to do it:

1. Visual Clues

Burned areas, cracked packages, or leaked electrolytes are red flags. Look for parts that appear physically damaged or discolored.

2. Voltage Checks

Measure voltages across IC pins and power rails. An unexpected drop may point to a shorted capacitor or faulty regulator.

3. Thermal Inspection

Use a thermal camera or just touch carefully. A component heating abnormally might be shorted internally.

4. Signal Tracing

Use a scope or logic analyzer to trace where signals stop behaving correctly.

5. Component Testing

Compare suspect part readings to known-good values. Swap out parts if needed to confirm suspicion.

How Do You Identify Electronic Components on a Circuit Board?

Understanding how to identify components on a PCB helps in repairs, testing, and reverse engineering. Here are some methods that can help you to identify the components:

  • Look at the Silkscreen: Reference designators like R5 (resistor), C3 (capacitor), U2 (IC) help locate parts quickly.
  • Check the Values: Printed numbers often reveal resistance, capacitance, or voltage ratings.
  • Use Datasheets: For ICs and transistors, part numbers can be searched online for specs and pinouts.
  • Refer to Schematics: The design files give a complete map of how everything connects.
  • Use a Component Tester: These handheld tools can identify unknown parts and help verify pin functions.

About Best Technology

Best Technology is a leading PCB manufacturer and assembler in China, offering full-service solutions for small PCB fabrication, SMT assembly, and functional testing. We provide:

  • PCB prototyping and mass production
  • Turnkey assembly with DFM support
  • Functional and in-circuit testing
  • Full traceability via MES system
  • Fast quotes and professional engineering advice

If you need a reliable partner for assembling and testing PCBs, reach out to Best Technology today.

Common FAQs about PCB

1. Can I assemble a small PCB at home?

Yes, with the right tools like a soldering iron, tweezers, magnifier, and steady hands, you can assemble small PCBs manually.

2. What’s the safest way to test a new PCB?

Start with a multimeter check for shorts, then use a bench power supply with current limiting to test under controlled conditions.

3. Can I use AOI on low-volume runs?

Manual inspection is more cost-effective for low volumes, but desktop AOI systems are now affordable for small labs.

4. How do I avoid soldering errors on small PCBs?

Use a stencil for even paste application, magnification to inspect, and reflow ovens with the right temperature profile.

5. Do I need ICT or flying probe testing?

ICT is better for large batches. Flying probe is ideal for prototyping or small batch production without custom fixtures.

PCB Fabrication Process, PCB Manufacturer in China
Wednesday, June 11th, 2025

Printed circuit boards (PCBs) form the foundation of nearly every electronic product today. But how does a design turn into a finished, functioning circuit board? The answer lies in the detailed PCB fabrication process.

What Is the PCB Fabrication?

The PCB fabrication process refers to the entire set of procedures used to manufacture a bare printed circuit board from your PCB design files —such as Gerbers, ODB++, or IPC-2581 formats—into an actual bare board ready for assembly. It involves a sequence of tightly controlled steps including inner layer imaging, etching, lamination, drilling, plating, outer layer imaging, surface finishing, and final testing.

The fabrication process must be precise and tightly controlled to avoid defects like layer misalignment, incomplete vias, or inconsistent impedance — all of which can cause failures.

Step-by-Step of the PCB Fabrication Process

Step 1: Engineering Preparation (DFM & CAM)

Before any physical process begins, the fabrication team conducts a Design for Manufacturability (DFM) review. This ensures your files comply with the manufacturer’s capabilities. Then, Computer-Aided Manufacturing (CAM) software analyzes and prepares files for production. This step includes:

  • Layer stackup analysis
  • Drill file optimization
  • Netlist extraction
  • Gerber validation

Step 2: Inner Layer Imaging

Each inner copper layer is made from a copper-clad laminate coated with a light-sensitive photoresist. Laser Direct Imaging (LDI) is used to expose the desired circuit pattern onto the photoresist. After UV exposure, unexposed areas are washed away during the developing stage, revealing the copper trace pattern underneath.

Step 3: Etching and Resist Stripping

The exposed copper is chemically removed using an etching solution, such as ammonium persulfate. The hardened photoresist protects the copper that should remain. Once etching is complete, the photoresist is stripped, leaving the final copper trace layout on the inner layers.

Step 4: Inner Layer Inspection and Punching

Automated Optical Inspection (AOI) is performed on every inner layer to detect shorts, opens, or width variations. Once approved, layers are optically punched with precise targets to ensure perfect layer-to-layer registration during lamination.

Step 5: Oxide Coating for Bonding

Before lamination, an oxide treatment (or alternative bonding method like black oxide or oxide alternative) is applied to increase the surface roughness of the copper. This improves resin adhesion and mechanical strength between layers.

Step 6: Lamination

Layers of copper-patterned cores and prepregs are stacked in sequence based on the final stack-up design. Using a lamination press, heat and pressure bond these materials into a multilayer PCB. Any layer shift during this step can lead to catastrophic misalignment, so precise registration is essential.

Step 7: Drilling

Drilling creates the interconnections between layers, including through-holes and vias. High-speed CNC drilling machines are used for standard holes, while laser drilling is employed for microvias in HDI PCBs. After drilling, panels undergo deburring and desmearing to clean the hole walls.

Step 8: Electroless Copper Plating

The drilled holes are non-conductive at first, so a thin layer (~1 ”m) of copper is deposited chemically on the entire panel surface and hole walls. This electroless copper plating is critical for enabling conductivity across the board layers.

Step 9: Outer Layer Imaging and Electroplating

Outer layers are also coated with photoresist and exposed via LDI, defining where copper should remain. After exposure and development, the board is electroplated with copper to build up the outer traces and fill via holes. A tin plating is then applied as a temporary etch resist.

Step 10: Outer Layer Etching and Tin Stripping

The exposed areas (not protected by tin) are etched to remove excess copper. Once the etching is completed, the tin is chemically stripped, leaving behind the precise copper pattern for the outer layers.

Step 11: Solder Mask, Silkscreen, and Surface Finish

The board is coated with solder mask to insulate and protect copper traces while preventing solder bridges during assembly. Then, silkscreen (legend) is printed to mark component reference designators. Finally, a surface finish is applied to all exposed pads to improve solderability and protect against oxidation. Typical finishes include:

  • ENIG (Electroless Nickel Immersion Gold)
  • HASL (Hot Air Solder Leveling)
  • Immersion Silver
  • Hard Gold Plating
  • Soft Gold Plating
  • OSP (Organic Solderability Preservative)

Step 12: Electrical Testing

All fabricated boards undergo electrical testing to validate circuit continuity and isolation. This includes:

  • Open/short detection
  • Impedance testing (for high-speed circuits)

Test methods like flying probe or bed-of-nails based on volume and complexity

These tests confirm that the final PCB functions exactly as designed.

Step 13: Profiling, Routing, and V-Scoring

The final step in the PCB fabrication process is mechanical profiling. Boards are separated from the panel using CNC routing, V-cutting, or punching, depending on panelization methods. This step defines the exact outer dimensions of each PCB, matching the customer’s mechanical drawing.

Quality Control in the PCB Fabrication Process

Quality control (QC) is a vital part of the PCB fabrication process, ensuring that every board meets design specifications and performance standards. At each stage of production, rigorous testing and inspections are carried out to prevent defects and maintain reliability.

Key quality control practices include:

  • Design Rule Checks (DRC): Performed during CAM to validate trace width, spacing, hole size, and stack-up consistency before fabrication begins.
  • Automated Optical Inspection (AOI): Used after inner layer imaging and etching to catch shorts, opens, and trace issues.
  • X-ray Inspection: Applied in multilayer and HDI boards to verify layer registration and detect internal via or plating problems.
  • Solder Mask Registration Check: Ensures that the solder mask aligns properly with the copper pads to avoid bridging.
  • Surface Finish Evaluation: Verifies the integrity and thickness of ENIG, HASL, or OSP finishes.
  • Electrical Testing (E-Test): Confirms electrical connectivity of all nets and absence of shorts through flying probe or bed-of-nails testing.
  • Final Visual Inspection: Technicians visually inspect the board for cosmetic defects like solder mask smearing, silkscreen blurring, or mechanical damage.
PCB Fabrication Process, PCB Manufacturer in China

At Best Technology, we implement a 100% inspection rate before shipping, including impedance control and dimensional verification, supported by ISO9001, ISO13485, IATF16949, and AS9100D certifications.

Common Challenges and How to Avoid Them in PCB Fabrication

The PCB fabrication process involves over a dozen tightly coordinated steps, and even minor deviations can lead to functional failures or yield loss. Understanding the most common challenges — and how to prevent them — is crucial for design engineers and buyers alike.

1. Layer Misalignment

During lamination, even slight misregistration between inner layers can cause via breakout or impedance drift. This is often due to poor tooling, inaccurate punching, or thermal distortion. To avoid this, manufacturers must use optical punching systems and tightly control temperature profiles during lamination.

2. Inconsistent Plating in Through-Holes

Uneven plating thickness can result in poor conductivity or cracking under thermal stress. This typically stems from incorrect bath chemistry or poor hole preparation. Electroless copper plating, followed by well-regulated electrolytic plating, is essential to create reliable interconnects.

3. Solder Mask Misalignment

If the solder mask isn’t accurately registered, it can expose traces or cover pads, leading to solder bridging or poor wetting. Using laser direct imaging (LDI) for solder mask improves accuracy significantly.

4. Etching Defects

Over-etching narrows traces; under-etching leaves shorts between conductors. These issues often arise from aged chemistry or poor agitation. Manufacturers must maintain strict control over etching parameters and regularly calibrate their lines.

5. Warpage in Multilayer Boards

High-layer count PCBs or boards with uneven copper distribution may warp during lamination or reflow. This is mitigated by symmetrical stack-up design and consistent copper balancing.

The best way to avoid these issues is to partner with a manufacturer who offers early-stage engineering review, real-time process monitoring, and full transparency during production.

How to Choose a Reliable PCB Fabrication Partner?

1. Your manufacturer must be able to support your design complexity — whether it’s HDI, controlled impedance, via-in-pad, or metal-core PCBs. Check their minimum trace/space, layer count, and material compatibility before proceeding.

2. An experienced fabrication partner doesn’t just produce what you send. They should actively review your design, feedback EQ (engineer question) file, flag manufacturability concerns, and suggest layout improvements. Free DFM review, stack-up optimization, and impedance modeling are key indicators of a capable supplier.

3. Leading manufacturers use MES system to track each step of your order — from raw material to final inspection.

4. Ask your PCB manufacturer: Can you reach an engineer when issues arise? Do you get weekly updates or have to follow up multiple times? A strong partner maintains open, proactive communication, especially for urgent or high-reliability projects.

5. Choose a PCB fabrication partner who can handle both quick-turn prototypes and volume production.

Best Technology is a leading PCB manufacturer in China, we help customers from prototyping to mass production with:

✅ 24-hour quick turn

✅ Competitive pricing

✅ Full traceability using MES systems

✅ Engineering support for stack-up, impedance, and DFM

Whether you’re designing a six-layer communication board or a single-layer aluminum LED module, we can support every stage of your PCB fabrication process.

PCB Fabrication Process, PCB Manufacturer in China

Frequently Asked Questions (FAQ)

1. What’s the difference between PCB fabrication and PCB assembly?

Fabrication creates the bare board; assembly mounts components onto it.

2. How long does the PCB fabrication process take?

Standard lead times are 5–7 days, but quick-turn options (24–48 hours) are available.

3. Which surface finish should I choose for my PCB?

ENIG is preferred for SMT and fine-pitch components; HASL works well for through-hole.

4. Can I request a custom stack-up for impedance control?

Yes, Best Technology supports custom stack-ups for RF, high-speed, and HDI boards.

5. How much does the PCB fabrication process cost?

Costs depend on layer count, board size, materials, surface finish, and lead time.