PCB manufacturing PCB manufacturing
Home > Blog

Posts Tagged ‘pcb conformal coating’

PCB Conformal Coating Standards, Process & Removal Solution
Thursday, November 13th, 2025

Why conformal coating is used in PCB? Let’s discover benefits, types, standards, process and removal solution for PCB conformal coating.

What Is Conformal Coating on PCB?

Conformal Coating is a specially formulated protective paint applied to PCB surfaces to form a 25-200μm transparent protective film. Its function is to provide protection against moisture, salt mist, and mold, effectively blocking water vapor, chemical corrosion, and biological erosion while offering comprehensive protective capabilities such as insulation, shock resistance, and resistance to high/low temperatures. This technology is widely used in automotive electronics, aerospace, medical devices, and other fields, effectively extending the service life of PCBs in complex environments and supporting miniaturized component designs.

What Is Conformal Coating on PCB?

Why Conformal Coating Is Used In PCB?

Benefits of PCB Conformal Coating:

  • Enhanced Environmental Adaptability and Reduced Failure Risk: Moisture-proof, salt spray-proof, and mold-proof properties block moisture, chemical corrosion, and biological attack. For high-density PCBs or precision components, it prevents circuit oxidation, solder joint corrosion, or short circuits caused by environmental factors such as humidity and salt spray, significantly reducing rework rates and after-sales costs.
  • Enhanced Mechanical Strength and Shock Resistance: After curing, it forms an elastic protective layer, reducing mechanical damage caused by vibration, impact, or thermal shock. Suitable for dynamic scenarios such as automotive and industrial equipment, effectively extending the PCB’s lifespan under harsh conditions.
  • Optimized Design Space and Electrical Performance: Insulation supports smaller line spacing and higher power density, enabling miniaturized component design; leakage protection improves signal integrity and reduces electromagnetic interference (EMI) risks.
  • Simplified Process and Cost Control: Utilizes automated coating (spraying/dipping) processes, which are highly efficient and mature. Material costs vary depending on the type, but overall costs are controllable during mass production, while reducing hidden losses caused by environmental failures.
  • Meet Industry Standards and Certification Requirements: High-reliability fields (such as automotive electronics and medical devices) require conformal coating protection to ensure compliance with salt spray tests, flame retardant certifications, etc. Planning the coating process in advance can mitigate risks associated with later certification processes.

Common Types of PCB Conformal Coating

Acrylic resin conformal coating

  • Features: Fast surface drying and curing time, excellent conformal properties, inexpensive, transparent, flexible texture, and easy to repair.
  • Applications: Cost-sensitive consumer electronics products requiring rapid curing.

Polyurethane conformal coating

  • Features: Long service life, strong chemical corrosion resistance, but relatively long curing time.
  • Applications: Industrial equipment or automotive electronics requiring long-term stability.

Silicone resin conformal coating

  • Features: Excellent high-temperature resistance, stable performance in extreme temperature environments, and good solvent resistance.
  • Applications: Aerospace, military, and other fields requiring high temperature and extreme environmental resistance.

Rubber-based conformal coating

  • Features: Good elasticity, providing good shock resistance and protection against mechanical damage.
  • Applications: Electronic equipment subject to strong vibration or mechanical impact.

Conformal Coating for PCB Standards

IndustryStandardThickness RequirementPerformance IndicatorsTest/Verification Criteria
General ElectronicsIPC-A-61015~17μm (protection level dependent)Moisture/salt/dust proof; Insulation ≥100V/μmIPC-A-600 appearance grading (level 1-3)
Automotive ElectronicsIPC-6012≥25μmDielectric strength ≥500V/mil; Temperature resistance -40℃~150℃Thermal cycling 1000 cycles; Salt spray test 48H
AerospaceMIL-I-46058C30~130μmExtreme environment adaptability (-55℃~200℃); Chemical corrosion resistance; High frequency signal stabilityMIL-STD-810H environmental reliability test
High Reliability IndustrialDIN EN 6108650~200μmSulfurization resistance; Aging resistance (UV stability); Flame retardancy (UL94 V-0)DIN 50021 salt spray test

PCB Conformal Coating Process

Below Is A Detailed Guide to PCB Conformal Coating Process:

1. Surface Preparation and Cleaning

  • Core Requirement: Thoroughly remove PCB surface contaminants (such as flux residues, grease, dust) to ensure coating adhesion.
  • Operational Standards: Use ultrasonic cleaning, solvent wiping (e.g., isopropyl alcohol), or plasma cleaning technology. Verify that the surface contact angle after cleaning is ≤30° to meet the IPC-A-610 standard.
  • Special Treatment: For high-reliability scenarios, additional micro-etching or chemical cleaning steps are required to enhance the bonding strength between the coating and the substrate.

2. Shielding Area Planning

  • Precise Shielding: Use solvent-resistant masking tape or custom coating masks to protect connectors, test points, heat sinks, key switches, and other areas that require maintaining electrical contact or mechanical function.
  • Automation Support: Adopt laser-cut masking templates or robotic spraying systems to achieve high-precision selective coating, preventing coating intrusion into sensitive areas.

3. Coating Material Selection & Matching

  • Nanocomposite coating: Incorporating nano-silica or boron nitride particles to improve coating abrasion resistance and thermal conductivity (e.g., thermal conductivity > 1.2 W/m·K at 200℃), suitable for 5G base station PCBs.
  • Environmentally friendly formulation: Water-based acrylic coating with VOC emissions < 50 g/L, complying with EU REACH regulations and California Proposition 65.
  • Thickness gradient design: A 200 μm thick coating is used in critical solder joint areas, gradually decreasing to 25 μm at the edges, balancing protection and heat dissipation requirements.

4. Coating Application Techniques

  • Spray: Suitable for large-area uniform coating. Requires control of nozzle pressure and atomization effect to ensure coating thickness of 20-100μm.
  • Dip: Suitable for batch production. Requires control of immersion speed and withdrawal angle to avoid air bubble entrapment.
  • Selective Coating: Uses robotic or needle systems to precisely control the coating area, reducing material waste.
  • Brush: Suitable for small-batch or repair scenarios. Requires professional operation to avoid uneven coating.
  • Automation Integration: For high-throughput scenarios, online spraying robots combined with vision inspection systems are used to adjust the coating path in real time.

5. Curing and Post-Processing

  • Curing Process: Depending on material properties, choose thermal curing (80-120℃), UV curing (requires photoinitiator), or room temperature curing. Curing time must strictly follow the material data sheet (TDS).
  • Post-Curing Verification: After curing, perform coating hardness test (pencil method), adhesion test (cross-cut tape test), and weathering test (double 85 test: 85℃/85% RH).

6. Quality Control and Inspection

  • Process Monitoring: Use wet film thickness gauges to measure coating thickness in real time. UV detection systems identify coating defects such as pinholes and bubbles.
  • Destructive Testing: Cross-sectional analysis verifies the interface bonding between the coating and the substrate. Thermal shock testing (-40℃~125℃ cycling) verifies the coating’s temperature change resistance.
  • Non-Destructive Testing: Automated optical inspection (AOI) systems scan the coating surface to identify defects such as cracks and delamination.

7. Environmental and Safety Compliance

  • Environmental Compliance of Materials: Comply with RoHS and REACH regulations. Prioritize the use of low-VOC (volatile organic compounds) or water-based coating materials.
  • Operational Safety: Equip with ventilation systems and personal protective equipment (PPE). Curing exhaust must be treated by environmental protection equipment to meet emission standards.
PCB Conformal Coating Process

How to Remove Conformal Coating From PCB?

Below Is A PCB Conformal Coating Removal Solution:

1. Accurate Identification and Characteristics of Coating Types

  • Acrylic (AR): General-purpose coating, soluble in acetone/isopropanol. Case: Humiseal 1B31 requires high-Kb flux cleaners; immersion requires lid to prevent evaporation (ref: “Classification of Conformal Coatings”).
  • Silicone (SR): Extreme temperature resistance (-65°C to 200°C). Requires siloxane-specific solvents or micro-sandblasting (80μm glass beads). Example: Aerospace PCBs use 200°C hot air to soften coating before plastic scraper removal, avoiding copper trace damage.
  • Polyurethane (UR): Chemical corrosion resistance. Requires strong solvents (dichloromethane) or 200–300°C hot air. Note: Uncured coatings use dedicated removers; cured coatings need extended solvent immersion.
  • Epoxy (ER): High hardness. Requires mechanical grinding (400–600 grit) or 150–200°C hot air stripping. Example: Automotive PCBs limit sandblasting pressure to ≤0.3 MPa to prevent trace fractures.
  • Parylene (XY): Vapor-deposited coating. Only removable via plasma etching (industrial equipment required). Compliance: RoHS 3.0, heavy metal ions ≤0.5 mg/L.

2. Chemical Solvent Method – Detailed Operational Standards

Solvent Selection & Compatibility: Acrylic → acetone/IPA; silicone → siloxane solvents; polyurethane → dichloromethane. Test solvents on scrap boards to avoid ABS/plastic/connector corrosion.

Procedures:

  • Localized Repair: Apply solvent with cotton swab, wait 1–2 min, gently scrape with plastic spatula.
  • Full Board Stripping: Immerse in SUS304 solvent tank for ≥1 hr, brush with soft bristles.

Safety & Environmental Compliance: Operate in ventilated areas; wear nitrile gloves + goggles. Hazardous waste disposal required; UV blacklight checks for ionic residues (fluorescence indicates contamination).

3. Mechanical & Thermal Methods – Technical Details & Case Studies

  • Micro-Sandblasting: Precision pen with 80μm glass beads, 3-sec scan at 10cm. Ideal for BGA corners. Example: High-frequency PCBs use this to maintain 2GHz signal integrity.
  • Hot Air Gun: 150–200°C for 10–20 sec, followed by plastic scraper removal. Caution: Temperatures >180°C risk burning silkscreen; use thermal tape to protect sensitive zones.
  • Mechanical Grinding: 400–600 grit sandpaper or rotary tools (500–1000 RPM), paired with compressed air to clear debris. Critical: Minimize pressure to avoid trace/solder mask damage.

4. Advanced Techniques – Laser & Plasma Etching

  • Laser Ablation: UV laser (355nm) for selective removal of parylene. Parameters: Energy density ≤10 J/cm² to prevent substrate carbonization.
  • Plasma Etching: Ionized gas stripping via equipment (e.g., Schuler HFA). Case: High-value aerospace PCBs use this for substrate-safe removal.

5. Safety & Environmental Compliance

  • PPE: Respirators + goggles + solvent-resistant gloves; avoid direct skin contact.
  • Environmental Management: Waste solvents require licensed disposal; effluent COD ≤500 mg/L, heavy metals ≤0.5 mg/L (GB/T 26572).
  • Recoating Procedures: Post-cleaning wipe with 90%+ IPA, match original coating type (e.g., silicone-to-silicone). Apply thin layers (25–50μm), cure per manufacturer specs (e.g., UV acrylic: 8-sec cure). Inspect via 10x magnification for bubbles/pinholes.
How to Remove Conformal Coating From PCB?

PCB Conformal Coating Services Offered by Best Technology

Best Technology offers professional conformal coating services for PCBs, including four types of PCB conformal coating services:

  • Acrylic resin conformal coating
  • Polyurethane conformal coating
  • Silicone resin conformal coating
  • Rubber-based conformal coating

Our Quality Assurance

  • Coating Process: Spraying, dip coating, and brush coating are used, with film thickness controlled between 25-75μm.
  • Curing Control: Supports UV curing (3-5 seconds surface dry) and heat curing (stepped temperature increase).
  • Quality Requirements: The paint film is smooth and defect-free, and adhesion passes the cross-cut adhesion test to ensure protective effect.

Why Choose us?

  • Environmental Protection and Customization: Provides water-based products and customized solutions, compliant with RoHS and other standards.
  • High-Precision Equipment: Uses selective coating machines to achieve film thickness control accuracy of ±2μm.
  • Rapid Response: Supports small-batch trial production and mass production, flexibly meeting customer needs.

Welcome to contact us if you have any request for PCB conformal coating service: sales@bestpcbs.com.

What is PCB conformal coating? What is its use?
Friday, March 7th, 2025

PCB conformal coating is a thin layer of polymer applied to the surface of a PCB to protect the circuits and board components from environmental stresses. The coating ensures that the PCB maintains high performance and reliability in the face of moisture, condensation, dust, dirt, chemicals, corrosion and other adverse environmental conditions.

What is PCB conformal coating? What is its use?

What is Conformal Coating?

Conformal coating is a liquid polymer film applied to a printed circuit board (PCB) to protect it from environmental factors. It conforms to the board’s shape, covering components without affecting their function. This coating prevents damage from humidity, dust, salt spray, and chemical exposure, which can cause corrosion and electrical failures.

It is commonly used in aerospace, automotive, medical, and industrial electronics, where protection is crucial for long-term performance. The coating also helps prevent short circuits caused by contaminants and enhances the overall durability of the PCB.

What Are the 5 Types of Conformal Coating?

There are several types of conformal coatings, each offering unique benefits based on the application requirements. The five most commonly used coatings are:

  • Acrylic acid (AR): After liquid coating, it is heated and cured at room temperature, providing cost-effective moisture protection, easy to apply and reworkable, suitable for conventional environments such as consumer electronics, but its high temperature resistance is limited.
  • Silicone (SR): Ideal for extreme temperature environments, with excellent weather resistance and shock resistance, widely used in high reliability scenarios such as aerospace and automotive electronics.
  • Polyurethane (UR): It has strong chemical resistance and wear resistance, but it is difficult to remove after curing, suitable for industrial control panels that require long-term protection and low maintenance requirements.
  • Epoxy resin (ER): Thermosetting materials require high temperature curing, provide a rigid protective layer, and are extremely resistant to solvents, moisture and mechanical stress, but the high hardness makes rework difficult, and is mostly used in military or harsh environment equipment.
  • Parylene (XY): It is formed into a thin film through vacuum vapor deposition, has excellent moisture resistance and chemical resistance, and is suitable for precision scenarios such as medical implants and high-frequency circuits, but the process is complex and the cost is high.

Each type has its advantages depending on the operating environment, durability needs, and repairability of the PCB.

Do All PCBs Have Conformal Coating?

No, not all PCBs require conformal coating. It depends on the intended use of the board. Consumer electronics, such as smartphones and laptops, may not need it since they are protected within enclosures.

What is PCB conformal coating? What is its use?

However, industrial, medical, and military PCBs often require this coating due to exposure to extreme conditions, moisture, or contaminants.

For products that must operate in outdoor, high-humidity, or chemical-rich environments, conformal coating is essential to maintain reliability.

What is the Point of Conformal Coating?

The primary purpose of conformal coating is to protect electronic circuits from environmental damage. It prevents issues like corrosion, oxidation, and short circuits caused by moisture or contaminants.

It also provides:

  • Enhanced Reliability: Reduces the risk of failure in harsh conditions.
  • Longer Lifespan: Protects components from physical and chemical wear.
  • Improved Performance: Prevents signal interference from conductive debris.
  • Cost Savings: Reduces maintenance and replacement costs over time.

With conformal coating, PCBs perform better, last longer, and withstand more challenging environments without degradation.

When to Apply Conformal Coating?

Conformal coating should be applied after the PCB assembly process but before final testing. This ensures that all components are correctly placed and functioning before adding the protective layer.

It is best applied when:

The PCB will be exposed to moisture, dust, or chemicals.

The circuit operates in high-temperature or high-humidity environments.

There is a risk of vibration or mechanical stress affecting performance.

Applying the coating at the right stage prevents contamination and defects while ensuring maximum protection.

How to Apply Conformal Coating?

The application method depends on the type of coating, production volume, and precision requirements. The most common methods include:

  • Brushing: Ideal for small-scale or repair applications. Simple and cost-effective but less precise.
What is PCB conformal coating? What is its use?
  • Spraying: Provides an even coating over large surfaces. Used for medium-scale production and manual application.
  • Dipping: PCB is submerged in the coating liquid. Ensures full coverage but may lead to excess material buildup.
  • Selective Coating Machines: Uses robotic arms to apply coating only where needed. Precise and efficient for high-volume production.

After application, the coating must cure using air drying, heat, or UV light, depending on the material used. Proper curing ensures maximum adhesion and durability.

How to Remove Conformal Coating?

Although conformal coatings are designed to be permanent, they can be removed when necessary, such as during repairs or modifications. The removal method depends on the type of coating:

  • Solvent Removal: Works for acrylic and some urethane coatings. Chemical removers dissolve the coating without damaging the PCB.
  • Thermal Removal: Applying heat softens some coatings, making them easier to scrape off.
  • Mechanical Removal: Abrasive tools can scrape or sand away rigid coatings like epoxy.

Proper removal ensures that the PCB remains intact while allowing for necessary repairs or modifications.

What Are the Disadvantages of Conformal Coating?

Although conformal coating provides excellent protection, it has some limitations:

  • Difficult Repairs: Once coated, components can be harder to access for modifications.
  • Extended Drying Time: Some coatings take longer to cure, delaying production.
  • Application Complexity: Requires specialized equipment for precision coating.
  • Removal Challenges: Hard coatings like epoxy are difficult to remove without damaging the PCB.

Despite these challenges, the benefits of conformal coating far outweigh the drawbacks, making it a valuable solution for electronic protection.

Is Solder Mask the Same as Conformal Coating?

No, solder mask and conformal coating serve different purposes.

What is PCB conformal coating? What is its use?
  • Solder Mask: A permanent protective layer applied during PCB manufacturing. It prevents solder bridges and protects copper traces from oxidation.
  • Conformal Coating: Applied after assembly to protect against moisture, dust, and chemicals. It is a transparent layer that shields the entire circuit.

While both offer protection, solder mask is built into the PCB, while conformal coating is an additional layer for enhanced durability.

Can We Apply Conformal Coating?

Yes, BEST Technology provides professional conformal coating services backed by 18+ years of PCB manufacturing expertise.

With advanced conformal coating equipment and a team of skilled professionals, BEST Technology ensures precise application, superior protection, and long-lasting performance for circuit boards. Whether you need acrylic, silicone, urethane, epoxy, or parylene coatings, BEST Technology can meet specific requirements with high-quality, industry-standard solutions.

Conclusion:

Conformal coating is an essential protective solution for PCBs operating in challenging environments. It ensures long-term reliability, prevents corrosion, and enhances performance in critical applications.

Though it adds complexity to the production process, the benefits of conformal coating far outweigh the disadvantages. It extends the lifespan of electronic devices. For professional PCB solutions, contact sales@bestpcbs.com

PCB Protection: What is PCB coating?
Tuesday, February 18th, 2025

PCB coating is a layer of special material applied on the surface of PCB to protect the circuit board from environmental factors (such as moisture, dust, chemical corrosion, etc.) while improving its electrical insulation, welding performance and mechanical strength. Common coating types include organic coating, metal plating, conformal coating, etc., which are applied by spraying, dipping or brushing.

PCB Protection: What is PCB coating?

What is conformal coating on pcb?

Conformal coating is a protective layer applied to a PCB to shield the board’s components from external contaminants like dust, moisture, and chemicals.

Unlike encapsulation, which surrounds the entire assembly, conformal coating is a thin, flexible layer that conforms to the shape of the PCB and its components. The coating allows the PCB to remain functional while also protecting it from environmental stresses.

The purpose of conformal coating is to enhance the reliability and longevity of PCBs by protecting them from elements that could cause short circuits, corrosion, or other types of damage.

It is particularly critical in industries where the PCB is exposed to harsh environments or where the failure of a PCB could have severe consequences.

Why conformal coating is used in pcb?

There are several reasons why conformal coating is essential for PCBs:

  • Protection from Moisture: Moisture is one of the biggest threats to PCBs. The coating provides a moisture-resistant barrier, reducing the risk of corrosion and electrical shorts.
PCB Protection: What is PCB coating?
  • Dust and Contaminant Shielding: Dust, dirt, and other environmental contaminants can easily find their way onto uncoated PCBs. A conformal coating prevents this by creating a physical barrier.
  • Chemical Resistance: Many industrial environments expose PCBs to chemicals, oils, and solvents. A good conformal coating can offer protection against these substances, preserving the integrity of the PCB.
  • Electrical Insulation: In certain cases, conformal coatings help isolate electrical components from one another, preventing unwanted connections or short circuits.
  • Thermal Resistance: In some instances, conformal coatings can help dissipate heat, allowing the PCB to operate more efficiently in high-temperature environments.

In summary, PCB coatings ensure better reliability, enhanced performance, and longer lifespan, especially in medical, automotive, and aerospace sectors.

Can conformal coating be removed?

Yes, conformal coating can be removed, though the process is often delicate and requires careful handling.

PCB coating removal is generally done when there’s a need for repair, modification, or redesign of the PCB. However, the removal process must be approached with caution to prevent damaging the underlying components.

Some coating removal techniques include using:

  • Chemical Strippers: These are special solvents designed to break down and dissolve the coating.
  • Mechanical Methods: Using tools like abrasive pads or brushes, the coating can be scrubbed off.
  • Heat Application: For certain coatings, heat guns or infrared ovens can soften the coating, making it easier to remove.

Each method should be selected based on the type of coating and the sensitivity of the PCB components.

How to remove conformal coating from pcb?

  • Choose the Right Method: Select a removal technique based on the type of coating and the nature of the PCB.
  • Use Protective Gear: Always wear gloves, goggles, and a mask to avoid exposure to chemicals and solvents.
  • Apply Solvent: If using a chemical stripper, apply it carefully to the PCB using a brush or cloth. Allow the solution to sit for a few minutes to break down the coating.
  • Scrub Off the Coating: Use a soft brush or sponge to scrub the coating off. Avoid using hard bristles that could damage the PCB.
  • Rinse and Dry: Once the coating has been removed, rinse the PCB with water or alcohol to remove any chemical residues. Allow the PCB to dry completely before reapplying a new coating or proceeding with repairs.

What is the best coating for PCB?

The best coating for PCB depends on various factors, including the environment in which the PCB will operate, the level of protection needed, and the specific requirements of the project.

  • Acrylic Coating: This is one of the most common PCB coatings due to its excellent moisture resistance, ease of application, and good overall protection. It is clear, which makes it ideal for applications where visual inspection is needed.
  • Silicone Coating: Known for its flexibility and high-temperature resistance, silicone coating is often used in PCBs that will be exposed to high heat or thermal cycling.
PCB Protection: What is PCB coating?
  • Polyurethane Coating: Offering high durability and excellent resistance to environmental factors, polyurethane coating is ideal for industrial applications that require both moisture and chemical resistance.
  • Epoxy Coating: Epoxy coatings provide strong protection against mechanical wear and harsh environments but are less flexible than other coatings.
  • Parylene Coating: Parylene is a highly effective coating for PCBs, offering protection from chemicals and moisture while maintaining a very thin and uniform layer. It is commonly used in medical and aerospace applications.

Each type has its advantages, so it’s essential to select the one that best fits your needs.

What is the cheapest PCB finish?

When it comes to PCB finishes, the cost can vary widely depending on the type of finish chosen.

Acrylic coatings are often considered among the most affordable options, providing good protection for general applications.

However, when specific environmental conditions require more advanced coatings (like Parylene or silicone), the cost can be higher.

Opting for a lower-quality coating may result in increased wear and tear or reduced protection, leading to failures over time.

How to measure conformal coating thickness?

Too thick a coating can cause unwanted stress on components, while too thin a layer might not provide sufficient protection.

The most common methods for measuring coating thickness are:

  • Micrometers: Special digital micrometers can be used to measure the thickness of the coating with great precision.
  • Ultrasonic Testing: This non-destructive method uses sound waves to measure the thickness of coatings.
  • Coating Thickness Gauges: These handheld tools use electromagnetic induction or eddy current technology to measure coating thickness quickly and accurately.

It’s vital to measure coating thickness regularly during the application process to maintain consistent protection across the entire PCB.

What are the drawbacks of conformal coating?

While conformal coatings offer numerous benefits, there are some drawbacks to consider:

  • Limited Protection for Physical Damage: While they protect against moisture and contaminants, coatings don’t provide protection against physical impacts or harsh mechanical stresses.
  • Coating Removal Complexity: Removing conformal coatings can be tricky and requires specialized techniques and tools.
  • Potential for Uneven Coating: If the coating process is not executed correctly, it could result in areas where the coating is too thick or thin, leading to reduced protection or malfunctioning.
  • Increased Component Stresses: Some coatings, especially those that are too thick or rigid, can put additional strain on the components, leading to potential damage over time.

Despite these drawbacks, the benefits of conformal coatings often outweigh the disadvantages, especially when dealing with sensitive electronics exposed to harsh environments.

How do you apply conformal coating to PCB?

Applying conformal coating to PCBs can be done through several methods, including:

  • Spraying: Spray applications are one of the most common methods for applying conformal coatings. It provides even coverage and is suitable for large-scale production.
PCB Protection: What is PCB coating?
  • Dipping: In this method, the entire PCB is dipped into a bath of conformal coating material, allowing it to coat the board evenly.
  • Brushing: For smaller batches or repairs, brushing is a viable method.
  • Selective Coating Machines: These machines can apply conformal coatings only to the areas of the PCB that need protection, minimizing wastage.

Each method has its benefits, and the choice depends on the specific project and production needs.

Conclusion:

PCB coating is an essential protective measure that ensures PCBs can withstand environmental challenges while maintaining functionality.

At Best Technology, Our experienced engineers will help you choose the best solution for your project, ensuring your PCBs are protected and reliable. For more information, contact us at sales@bestpcbs.com