PCB manufacturing PCB manufacturing
Home > Blog

Posts Tagged ‘PCB copper thickness chart’

What is Thick Copper PCB? PCB Copper Thickness vs Current
Tuesday, July 29th, 2025

A thick copper PCB refers to a printed circuit board that uses a higher amount of copper than a standard PCB. Typically, standard PCBs have copper thickness ranging from 0.5 oz to 2 oz per square foot. However, when the copper thickness is 3 oz or more per square foot, it is classified as a thick copper PCB.

These boards are built for handling high current, enhanced heat dissipation, and strong mechanical performance. You’ll find them in power electronics, electric vehicles, solar inverters, and industrial machinery—wherever reliability and power handling are critical.

At Best Technology, we specialize in custom thick copper PCB manufacturing. Whether you need 3 oz or 20 oz copper, our engineering team supports your design with precision, reliability, and fast delivery. We also provide full traceability and strict quality control, making sure each board meets your performance needs.

What is Thick Copper PCB? PCB Copper Thickness vs Current

Advantages of Thick Copper PCB

1. High Current Carrying Capacity

Thicker copper allows your PCB to carry more current through its traces without causing excess heat. This helps prevent overheating and damage to components. In other words, thick copper gives your board the power capacity it needs to run safely and efficiently.

2. Excellent Thermal Management

Heavy copper spreads heat more evenly across the board and away from sensitive components. This reduces hot spots and helps maintain stable operation. It’s especially useful in environments where heat buildup can be a problem, such as power supplies or LED lighting systems.

3. Increased Mechanical Strength

Thick copper PCBs are more durable. They are less likely to bend, crack, or delaminate during assembly or use. This added strength makes them ideal for heavy machinery, vehicles, and military equipment.

4. Improved Reliability and Product Life

Better current and heat handling reduce stress on the board and components. This leads to longer lifespan and fewer failures, which saves both time and cost in maintenance.

5. Compact and Efficient Designs

You can use narrower traces with thick copper while still meeting your current requirements. This allows for smaller board sizes and space-saving layouts, especially valuable in compact devices.

All of these advantages make thick copper PCBs a smart choice when performance and reliability truly matter.

Standard PCB Copper Thickness Chart

Copper thickness is usually measured in ounces per square foot (oz/ft²) or microns (µm). For every 1 oz of copper per square foot, the actual thickness of the copper layer is about 35 microns, or 1.4 mils. To help you understand how thick copper compares to standard copper, here’s a simple PCB Copper Thickness Chart with typical values.

Copper Weight (oz/ft²)Thickness (microns)Thickness (mils)Common Usage
0.5 oz~17 µm~0.7 milSignal layers, low-power circuits
1 oz~35 µm~1.4 milMost standard PCBs
2 oz~70 µm~2.8 milPower circuits, motor drivers
3 oz~105 µm~4.2 milStart of thick copper PCB range
4 oz~140 µm~5.6 milHigh-power, heat-intensive applications
6 oz~210 µm~8.4 milIndustrial power systems, battery packs
10 oz~350 µm~14 milHeavy-duty, high-current applications

Whether you are working on a standard 1 oz board or a 10 oz thick copper PCB, the thickness affects everything from electrical performance to thermal control. If you are unsure which thickness suits your project, Best Technology offers expert guidance and custom PCB solutions. We help you choose the right copper weight to match your current load, heat needs, and budget.

PCB Copper Thickness vs Current

One of the biggest reasons to use thick copper is current capacity. As copper thickness increases, it can carry more current without excessive heating. Here’s how it works:

  • 1 oz copper can carry around 1.2A on an inner layer for a 10°C temperature rise.
  • 3 oz copper can carry about 3.6A under the same conditions.
  • Higher copper weights (like 10 oz) can handle much more, depending on trace width.

This relationship is essential for designing safe and efficient circuits. Using IPC-2221 standards as a guide, engineers can determine how much copper is needed for any given load.

If you’re unsure, tools like the PCB copper thickness calculator can help you find the right copper weight based on your current and design needs.

PCB Copper Thickness vs Current

How to Choose PCB Copper Thickness?

Knowing how to choose PCB copper thickness is essential when designing a board that performs reliably under electrical and thermal stress. The right copper thickness affects current flow, heat management, durability, and even the size of your board. Choosing wisely can improve performance and reduce long-term costs.

1. Understand Your Current Requirements

Start by determining how much current your traces need to carry. Higher current demands thicker copper or wider traces. If your circuit handles heavy loads—like in power supplies or electric vehicles—you’ll likely need thick copper, starting from 3 oz or more.

2. Evaluate Space and Trace Width

Sometimes, there’s limited space on your PCB. If you cannot increase trace width to carry higher current, you can increase copper thickness instead. Thicker copper allows for narrower traces to handle the same current safely, helping you keep your design compact without sacrificing performance.

3. Check for Voltage Drop

Resistance in copper causes voltage drop across traces. Thicker copper has lower resistance, which means less voltage loss. If maintaining consistent voltage is important for your application—like in precision circuits or power regulation—opt for thicker copper to minimize drops.

4. Consider Cost and Board Size

While thicker copper improves performance, it also adds cost and weight. Choose copper thickness that meets your technical needs without over-engineering. For most consumer electronics, 1 oz or 2 oz is enough. For power devices, 3 oz to 10 oz may be needed.

How to Choose PCB Copper Thickness?

Thick Copper PCB Applications

  • Power supplies
  • Converters
  • Inverters
  • Battery systems
  • Motor drives, and charging circuits efficiently
  • Solar Power Systems
  • Inverters and control circuits
  • Military and Aerospace
  • Industrial Control

Anywhere power, heat, or strength is a concern, thick copper PCBs provide dependable performance.

How to Avoid Thick Copper PCB Delamination?

The delamination of thick copper circuit boards refers to a phenomenon that occurs during PCB manufacturing. Due to insufficient adhesion between the copper foil and the substrate or excessive internal stress, the copper foil and the substrate (such as FR-4 fiberglass board) separate from each other.

How to Avoid Thick Copper PCB Delamination?

While it’s not common, thick copper PCBs can be more prone to this issue if not manufactured properly. Here are some ways to avoid it:

1. Use High-TG Materials

High-TG (glass transition temperature) materials like FR4-TG170 or ceramic can better resist heat and stress.

2. Reliable Lamination Process

Proper lamination ensures strong bonding between copper and substrate. At Best Technology, we use high-pressure lamination and strict process control to prevent delamination.

3. Controlled Soldering Heat

Excessive heat during soldering can damage the board. Controlled soldering ensures minimal thermal stress.

4. Avoid Design Stress Points

Sharp corners and very narrow traces can concentrate stress. A smooth, balanced design reduces risk.

5. Quality Assurance

Choose manufacturers with strong quality systems that include thorough inspection and testing.

Best Thick Copper PCB Manufacturer – Best Technology

Looking for a trusted thick copper PCB manufacturer? Here’s why Best Technology is your best choice:

  • We specialize in 3 oz to 20 oz thick copper PCBs.
  • Certified with ISO9001, IATF16949, and UL.
  • Advanced plating and lamination techniques ensure strength and reliability.
  • Fast prototyping and mass production services.
  • Competitive pricing and on-time global delivery.
  • Engineering support for design, layout, and material choice.
  • Full traceability with our MES system and strict quality control.

Need help with your next project? Contact Best Technology today for a custom quote and expert support.

FAQs

1. What copper thickness qualifies as thick copper PCB?

Anything 3 oz per square foot or more is considered thick copper PCB.

2. How do I calculate required copper thickness?

Use a PCB copper thickness calculator based on your current, trace width, and temperature rise.

3. Can thick copper PCBs be multi-layered?

Yes, we manufacture single, double, and multi-layer thick copper PCBs.

4. Do thick copper PCBs cost more?

Yes, but they offer better performance and longer life, which offsets the cost.

5. How do I get a quote from Best Technology?

Just contact us with your design files, and we’ll provide a competitive, customized quote.

How to Choose PCB Copper Thickness?
Monday, July 21st, 2025

Are you worried about how to choose PCB copper thickness? Let’s master PCB copper thickness selection to optimize circuit performance, current handling, and thermal reliability with this comprehensive guide.

Are you troubled by these problems?

  • Uneven copper thickness leads to impedance loss? How to ensure high-frequency signal integrity?
  • Copper foil bubbles and falls off in high current scenarios? How to achieve both heat dissipation and reliability?
  • Copper thickness deviation exceeds 5% after lamination of multilayer boards? How to control mass production consistency?

The Solution Best Technology Can Provide:

  • Laser thickness measurement + dynamic compensation system – real-time control of etching parameters, copper thickness tolerance ±1.5μm.
  • Patented browning process – copper surface bonding strength increased by 60%, passed 3Ɨ288 hours salt spray test.
  • Full process thickness traceability – 20 parameters are recorded independently for each layer of board, and CPK value is stable ≄1.67.

Welcome to contact us if you have any request for PCB design, manufacturing or assembly service: sales@bestpcbs.com.

What Is PCB Copper Thickness?

PCB copper thickness refers to the physical dimension of the conductive copper layer applied to a substrate in printed circuit boards. This thickness is typically measured in ounces per square foot (oz), where 1 oz represents approximately 35 micrometers of pure copper deposited uniformly over one square foot area.

It impacts current-carrying capability, heat dissipation, and mechanical resilience of the circuit. Common standardized thicknesses include 0.5 oz for high-frequency signals due to reduced losses, 1 oz for general digital circuits, and 2 oz or higher for power-intensive applications like automotive systems or industrial equipment, where enhanced current handling and thermal management are needed.

What Is PCB Copper Thickness?

PCB Copper Thickness Chart

Copper Weight (oz)Thickness (μm)Max Current (10°C Rise)ApplicationsDesign Tips
0.5 oz17.50.6A/mm widthHDI, RF, wearablesUse with 0.2-0.3mm traces for signal integrity
1/3 oz (~0.33 oz)11.70.4A/mm widthUltra-thin flex PCBsAvoid >0.5A continuous current
1 oz351A/mm widthStandard boardsDefault choice for power
2 oz702.3A/mm widthPower suppliesReduces voltage drop by 50% vs 1oz
ā€Œ15 ozā€Œ525ā€Œ15A/mm widthHeavy power busbars, EV chargingRequires ≄3mm trace width & plating support

How to Choose PCB Copper Thickness?

1. Calculate Current Capacity First

  • Use the IPC-2221 formula: Ī”T = (I² * R * t) / (k * A); Where Ī”T = temp rise, I = current, R = resistivity, t = trace thickness, k = thermal conductivity, A = cross-sectional area.
  • Why: Avoid over-engineering. 1oz (35μm) suits most digital circuits (≤3A), while 2oz+ (70μm+) is required for power traces (>5A).

2. Match Signal Frequency to Copper Thickness

  • High-frequency (>1GHz): Use ≤1oz copper to minimize skin effect losses.
  • Low-frequency/Power: Opt for ≄2oz copper to reduce I²R losses.
  • Why: Balances signal integrity and thermal performance.

3. Factor in Manufacturing Constraints

  • Standard PCBs: 0.5oz–4oz (17μm–140μm) is manufacturable.
  • Flex/Rigid-Flex: Use ≤1oz copper to prevent cracking during bending.
  • Why: Avoid costly redesigns by aligning with fab capabilities.

4. Optimize Cost-Performance Ratio

  • 1oz Copper: Cost-effective for 80% of applications (consumer electronics).
  • 2oz–3oz Copper: +15–30% cost premium but critical for automotive/industrial.
  • Why: Saves 20–40% vs. over-specifying heavy copper.

5. Thermal Management Strategy

  • High-Power Zones: Use thick copper (2oz+) or combine with thermal vias.
  • Heat Sinks: Embed heavy copper planes (≄3oz) for direct cooling.
  • Why: Reduces reliance on external cooling components.

6. Impedance Control Requirements

  • Controlled Impedance Traces: Maintain consistent copper thickness (±10% tolerance).
  • Why: Ensures signal accuracy in RF/high-speed designs.
How to Choose PCB Copper Thickness?

    How to Measure Copper Thickness on PCB?

    Five Methods about how to measure copper thickness on PCB:

    Quick Visual Inspection (No Tools)

    • Method: Check PCB surface color/texture.
    • Thin copper (≤1oz/35μm): Shiny, smooth finish (common in consumer electronics).
    • Thick copper (≄2oz/70μm): Matte, rougher texture (visible under angled light).
    • Why: Instantly identify gross mismatches (e.g., supplier claims 2oz but delivers 1oz).

    Conductive Pen + Multimeter (Low-Cost)

    • Tools: Conductive ink pen (20),multimeter(30).
    • Steps:
    1. Draw a 1cm² grid on a scrap PCB section.
    2. Measure resistance (R) across the grid.
    3. Use formula: Thickness (μm) = (Resistivity Ɨ Width Ɨ Length) / (R Ɨ Depth).
    4. (Assume resistivity of copper = 0.01724 Ω·mm²/m).
    5. Accuracy: ±10% (sufficient for basic QC).
    • Why: $50 setup costs, detects 50%+ thickness deviations.

    Cross-Section Sampling (Destructive)

    • Tools: Razor blade, microscope (smartphone macro lens works).
    • Steps:
    1. Cut a small PCB slice near the edge.
    2. Polish the cross-section with sandpaper (600→2000 grit).
    3. Measure copper layer height under microscope.
    4. Accuracy: ±2μm (if done carefully).
    5. Why: Confirms supplier claims using $0.50 in tools.

    Third-Party Lab Testing (Dispute Resolution)

    • Method: Send samples to accredited labs (e.g., SGS, Intertek).
    • Tests:
    1. XRF (50–100/sample) for non-destructive analysis.
    2. SEM/EDS (200–500) for sub-micron precision.
    • Why: Legal-grade evidence for supplier negotiations/lawsuits.

    In-Circuit Current Testing (Functional Validation)

    • Method:
    1. Run PCB at max rated current.
    2. Monitor temperature rise with IR thermometer.
    3. Compare with thermal models (e.g., Ī”T = I²R).
    4. Failure Sign: Localized hotspots indicate insufficient copper thickness.
    • Why: Validates real performance without measuring tools.
    How to Measure Copper Thickness on PCB?

      Conversion of PCB Copper Weight to Thickness

      1. Core Conversion Formula

      • Standard Rule: 1 oz/ft² = 1.37 mil (34.79 μm)

      2. Adjustments

      Post-Etching Thickness Loss:

        • Inner layers lose ~10% due to lamination (e.g., 2oz → ~62μm).
        • Outer layers lose ~5% after plating/etching.

        Surface Finish Impact:

        • ENIG adds 0.1–0.15 mil (2.5–3.8 μm) → Compensate in impedance calculations.

        3. Advanced Calculation Methods

        For Custom Weights:

        • Thickness (μm) = Weight (oz/ft²) Ɨ 34.79 Ɨ (1 – Etching Loss %)
        • Example: 3oz with 12% loss → 91.8 μm (vs. theoretical 104.4 μm).

          Current-Carrying Capacity:

          • Empirical correction for high temps:
          • Effective Thickness (μm) = Nominal Thickness Ɨ (1 – 0.003 Ɨ (T_actual – 25°C))

          4. Manufacturing Tolerance Alerts

            • IPC-4562 Class B Tolerance: ±10% (e.g., 1oz could be 31.3–38.3 μm).
            • Critical Design Tip: Always specify minimum thickness in fab notes (e.g., “2oz, min 60μm post-etch”).

            5. Cost vs. Performance Tradeoffs

              • Thicker Copper = Higher cost (+40% for 2oz, +120% for 3oz) but enables:
              • 2Ɨ current capacity (vs. 1oz at same temperature rise).
              • 30% lower thermal resistance.

              Relationship Between PCB Copper Thickness vs Current

              Insufficient Copper Thickness Risks Product Reliability

              • Issue: Thin copper layers struggle to handle current, leading to overheating.
              • Example: 1oz (35μm) copper carrying 5A → 45°C temperature rise (exceeds safe 30°C limits).
              • Benefit: Prevents field failures and costly repairs (up to $200+ per unit).

              Over-Specified Copper Wastes Budget

                • Challenge: Unnecessarily thick copper increases costs by 15–40%.
                ApplicationRecommended ThicknessCost vs 1oz (35μm)
                Low-Power (<3A)1ozBase cost
                Industrial (5A)2oz+18%
                High-Power (10A)3oz+35%
                • Benefit: Optimizes cost by matching thickness to actual current needs.

                IPC-2221 Formula: Data-Driven Calculation

                  • Formula:Ā I = k Ɨ (Ī”T)^0.44 Ɨ (A)^0.725
                  • IĀ = Current (A)
                  • kĀ = 0.048 (external traces), 0.024 (internal traces)
                  • Ī”TĀ = Allowable temperature rise (keep ≤30°C)
                  • AĀ = Cross-sectional area (mm²) =Ā Thickness (μm) Ɨ Trace Width (mm) / 1000
                  • Benefit: Quickly calculate minimum copper thickness (e.g., 5A/5mm trace → 2oz required); Avoids under-engineering (risks) or over-engineering (costs).

                  Supplier Accuracy: Verify Thickness Claims

                    • Risk: Some manufacturers use thinner “rolled copper” than advertised.
                    • Solutions: Low-Cost Validation: Use a conductive pen + multimeter (formula:Ā Thickness (μm) = 0.01724 Ɨ Trace Width (mm) / (Resistance Ɨ Trace Length (mm))).
                    • High-Precision Validation: Third-party XRF testing (50–100/sample).
                    • Benefit: Ensures labeled thickness matches reality, avoiding hidden quality issues.

                    Client Action Checklist

                      • Design Phase: Use IPC formula to calculate thickness + 20% safety buffer.
                      • Procurement: Specify tolerance in contracts (e.g., “2oz ±0.2oz”).
                      • Incoming Inspection: Randomly test 1% of batches with conductive pen.
                      • Dispute Resolution: Present third-party reports to enforce warranties.

                      PCB Copper Thickness Calculator

                      ToolFeaturesBest For
                      Saturn PCB Toolkit• IPC-2152 compliant
                      • Auto-derating
                      • Impedance modeling
                      Power electronics
                      EEWeb Online Calculator• Temperature rise graphs
                      • Exportable reports
                      • Mobile-friendly
                      Quick field checks
                      Altium Integrated Tool• Real-time DRC
                      • Multi-layer analysis
                      • 3D thermal simulation
                      Altium users

                      Welcome to contact Best Technology if you need to calculate PCB copper thickness: sales@bestpcbs.com.