pcb
Home > Blog

Archive for the ‘FR4 PCB’ Category

Single layer PCB manufacturer | Single sided PCB Design&Prototype
Friday, September 27th, 2024

What is a single-sided PCB circuit board

Single-sided PCB circuit board is a type of printed circuit board. Only one side of the PCB board has circuits (it can have holes or not), and the other side is a substrate or directly covered with insulating ink. There is no circuit and the whole board is transparent under strong light (except for individual boards and special process requirements). The cross section only contains copper foil on the side with circuits.
Single-sided PCB circuit board is obtained by etching copper-clad board. Copper-clad board consists of board base and copper foil. The board base is usually made of insulating materials such as glass fiber, and is covered with a layer of copper foil (usually oxygen-free copper).

Single layer PCB manufacturer

Single layer PCB manufacturer Best Technology has offered high-quality PCBs and the best PCB assembly & box building service all over the world since 2006. We are professional fabricator on PCB prototype, IPC Class III standard are available. You can get high-quality PCB board and PCBA at a very reasonable price.

Single layer PCB manufacturer

Single layer PCB design
Best Technology excels in PCB design, perform PI analysis, SI analysis, EMC test and DFM tests to ensure one-time successed PCB design. Over 20 professional engineers, all of them has more than 15+ years experience in PCB, we make sure every design is optimized for performance and manufacturability.

Single layer PCB prototype
As an industry-leading PCB prototype manufacturer, Best Technology offers 24 hours quick turn PCB prototype, PCB assembly and reliable small-batch PCB production. Free technical support and VIP one-to-one service.

Single layer PCB production
With over 18 years PCB manufacture experience, we dedicated to provide highest quality PCB for customers. We offer turnkey service from PCB design, PCB layout, PCB prototype, mass production and PCB assembly. Contact us to get an instant quote.

Single layer PCB assembly
Professional PCB assembly service, includes DFM/DFA checks, function/ICT testing, X-RAY, Online dual AOI, nitrogen reflow oven. 10+ SMT lines, free passive parts and Thorough Inspections! SMT, Thru-hole, BGA, QFN Assembly at Low Prices! No MOQ, complex and difficulty designs welcome!

Single-sided PCB production process

  1. Cutting
  2. Drilling or punching
  3. Screen printing circuit anti-etching pattern or using dry film
  4. Curing inspection and board repair
  5. Screen printing solder mask pattern (commonly used green oil)
  6. Screen printing character mark pattern, UV curing
  7. Preheating, punching and appearance
  8. Electrical open and short circuit test
  9. Pre-coating flux anti-oxidant (drying) or tin spraying hot air leveling
  10. Packaging and delivery

Single-sided PCB production capacity

Item Content
Material type : XPC  FR-1  FR-4  CEM-1
Surface finish : ENIG gold, HASL Immersion Tin, Chemical Silver OSP
Layer No : Single side, Multilayer PCB
Max PCB size: 1500mm*600mm
Min PCB size: 5mm*5mm
Min space/width: 0.1mm
Warp and Twist: ≤0.5%(board thickness:1.6mm,PCB size : 300mm*300mm)
Board thickness: 0.3-5.0mm
Copper thickness: 35um-240um
Outline Tolerance: ±0.15mm
V-CUT Precision: ±0.1mm
Capacity: 80000㎡/Month
PTH Dia tolerance: ±0.076mm
Outline tolerance: CNC :±0.1mm  punch:±0.15mm

What are the single-sided PCB materials?

What are the single-sided PCB materials

What are the single-sided PCB materials

Phenolic paper substrate
Phenolic paper substrate (commonly known as cardboard, plastic board, V0 board, flame retardant board, red-letter copper clad board, 94V0). The most commonly used product models of phenolic paper-based copper clad boards are FR-1 (flame retardant) and XPC (non-flame retardant). Single-sided copper clad boards can be easily judged from the color of the characters on the back of the board. Generally, red characters are FR-1 (flame retardant) and blue characters are XPC (non-flame retardant). This type of board is the cheapest compared to other types of boards.

Epoxy fiberglass cloth substrate
Epoxy fiberglass cloth substrate (commonly known as: epoxy board, fiberglass board, fiberboard, FR4), epoxy fiberglass cloth substrate is a type of substrate with epoxy resin as adhesive and electronic grade glass fiber cloth as reinforcing material. Its bonding sheet and inner core thin copper clad board are important substrates for making multi-layer printed circuit boards. The working temperature is high and its own performance is less affected by the environment. In terms of processing technology, it has great advantages over other resin fiberglass cloth substrates. This type of product is mainly used for double-sided PCBs. It is also about twice as expensive as phenolic paper substrates, and the commonly used thickness is 1.5MM.

Composite substrates
Composite substrates (commonly known as powder boards, etc., cem-1 boards are also called 22F in some places in China) mainly refer to CEM-1 and CEM-3 composite-based copper-clad boards. Copper-clad boards made of wood pulp fiber paper or cotton pulp fiber paper as core reinforcement materials and glass fiber cloth as surface reinforcement materials, both of which are impregnated with flame-retardant epoxy resin, are called CEM-1. Copper-clad boards made of glass fiber paper as core reinforcement materials and glass fiber cloth as surface reinforcement materials, both of which are impregnated with flame-retardant epoxy resin, are called CEM-3. These two types of copper-clad boards are the most common composite-based copper-clad boards. This type of board is cheaper than FR4 type boards.

Single-sided PCB circuit board price

Since the cost of single-sided PCB circuit boards is affected by many factors, including the cost of raw materials, production cost, production process, special requirements, etc., its exact pricing needs to be negotiated with its single-sided PCB circuit board supplier. The general unit price calculation formula is: (length MM) × (width MM) × 0.01 × unit price (yuan/square meter) ÷ 10000 (rounded to 3 decimal places)
For specific single-sided PCB quotes, please consult bestpcbs.

Single-sided PCB circuit board price

Single-sided PCB circuit board price

Single-sided PCB applications and features

Single-sided PCBs are increasingly widely used due to their many unique advantages;
High density: For decades, high-density printed boards have developed with the improvement of integrated circuit integration and the advancement of installation technology.
High reliability: Through a series of inspections, tests and aging tests, PCBs can work reliably for a long time (usually 20 years).
Designability: According to the requirements of various performances (electrical, physical, chemical, mechanical, etc.) of single-sided boards, printed boards can be designed in a short time and efficiently through design standardization.
Manufacturability: Through modern production management, standardization, scale (quantification), automation, etc. can be achieved to ensure the consistency of product quality.
Testability: Complete test methods, standards and various test equipment and instruments have been established to detect and evaluate the qualification and service life of a single PCB.
Assembly: Circuit boards facilitate standardized assembly of various components to achieve automated, large-scale mass production. At the same time, circuit boards and various component assemblies can be assembled into larger components and systems, and even complete machines.

Maintainability: Circuit boards and various component parts are manufactured with standardized designs and scales. If a system fails, components can be replaced quickly and conveniently. The system can recover quickly due to this flexibility. More examples include system miniaturization, lightweight, high-speed signal transmission, etc.

FAQ About single sided pcb

FAQ About single sided pcb

Q: When laying out the board, if the lines are dense, there may be more vias, which will of course affect the electrical performance of the board. How can I improve the electrical performance of the board?
A: For low-frequency signals, vias are not a big deal, but for high-frequency signals, try to reduce vias. If there are many lines, you can consider multi-layer boards;

Q: Is it better to add more decoupling capacitors on the board?
A: Decoupling capacitors need to be added with appropriate values ​​at appropriate locations. For example, add them to the power supply port of your analog device, and use different capacitance values ​​to filter out stray signals of different frequencies;

Q: What are the standards for a good board?
A: Reasonable layout, sufficient power redundancy of power lines, high-frequency impedance, and simple low-frequency routing.

Q: How much difference do through holes and blind holes have on signals? What are the application principles?
A: Using blind or buried holes is an effective way to increase the density of multi-layer boards, reduce the number of layers and board size, and greatly reduce the number of plated through holes. But in comparison, through holes are easy to implement in terms of process and have lower costs, so through holes are generally used in designs.

Q: What kind of layout can achieve the best heat dissipation effect?
A: There are three main sources of heat in PCB: (1) heat generated by electronic components; (2) heat generated by the PCB itself; (3) heat transmitted from other parts. Among these three heat sources, the heat generated by components is the largest and is the main heat source, followed by the heat generated by the PCB board. The heat transmitted from the outside depends on the overall thermal design of the system and is not considered for the time being. The purpose of thermal design is to take appropriate measures and methods to reduce the temperature of components and PCB boards so that the system can work normally at a suitable temperature. This is mainly achieved by reducing heat generation and accelerating heat dissipation.

Q: Can you explain the proportional relationship between the line width and the size of the matching via?
A: This is a good question. It is difficult to say that there is a simple proportional relationship because the two simulations are different. One is surface transmission and the other is ring transmission. You can find a via impedance calculation software on the Internet, and then keep the impedance of the via consistent with the impedance of the transmission line.

Q: In an ordinary PCB circuit board with an MCU control, but without high current and high-speed signal requirements, is it better to lay a layer of ground wire around the outermost edge of the PCB to wrap the entire circuit board?
A: Generally speaking, just lay a complete ground.

Q: How to deal with the avoidance of vias during the wiring process of high-speed PCB, what good suggestions are there?
A: For high-speed PCB, it is best to make fewer vias and solve the need to increase vias by adding signal layers.

Q: How to select the thickness of the power trace in PCB board design? Are there any rules?
A: You can refer to: 0.15×line width (mm)=A, and copper thickness also needs to be considered.

Q: When digital circuits and analog circuits are on the same multi-layer board, should analog ground and digital ground be arranged on different layers?
A: This is not necessary, but analog circuits and digital circuits should be placed separately.

Q: How many vias are generally suitable for digital signal transmission? (Signals below 120Mhz)
A: It is best not to exceed two vias.

You may also like

DB Technology Hoot Circuit Board Replacement
Wednesday, September 25th, 2024

What Is DB Technology Hoot Circuit Board?

The DB Technology Hoot Circuit Board is an advanced control board used in hot tubs to manage and automate various functions, making your spa experience efficient and enjoyable. This circuit board is central to the hot tub’s operation, overseeing everything from heating the water to powering the jets. It communicates with the control panel, relays commands, and adjusts settings based on user inputs. Essentially, the Hoot Circuit Board is the brain of the hot tub, coordinating multiple components to maintain a smooth, safe, and personalized experience for the user. It is known for its durability and reliability, this board can, however, develop faults over time due to age, moisture, or electrical issues, necessitating a replacement.

DB Technology Hoot Circuit Board Replacement

Components and Functions of the Hoot Circuit Board

The DB Technology Hoot Circuit Board consists of several key components, each serving an essential role in the functioning of your hot tub:

  • Microcontroller Unit (MCU): The MCU is the core of the circuit board, processing commands from the control panel. It manages tasks like temperature adjustments, pump speed, and safety protocols.
  • Relay Switches: These switches control the power flow to various parts of the hot tub, such as heaters and pumps. They act as the gatekeepers, opening and closing circuits based on commands from the MCU.
  • Sensors and Thermistors: These components monitor temperature and water flow. They ensure the hot tub operates within safe limits, preventing overheating and other potential hazards.
  • Power Supply Components: The power components, including capacitors and resistors, regulate voltage and current, ensuring stable power delivery to the entire system.
  • Communication Ports: These ports allow the circuit board to communicate with the control panel and other connected devices, facilitating real-time adjustments and error reporting.

Each part of the Hoot Circuit Board works together to provide a safe and enjoyable hot tub experience. However, when one component fails, it can affect the entire system.

How Much Does It Cost to Replace a Circuit Board on a Hot Tub?

Replacing a circuit board on a hot tub can vary in cost, depending on the model and brand. For a DB Technology Hoot Circuit Board, replacement prices typically range between $200 and $600. Factors influencing the cost include the availability of the board, whether it’s purchased directly from the manufacturer or a third-party supplier, and any additional installation fees.

If you opt to replace the board yourself, you may only need to pay for the board and any tools required. However, this approach demands basic knowledge of electronics and safety precautions.

Or you can hirea professional can add to the cost, with service fees ranging from $100 to $200. Though more expensive, a professional installation ensures the board is installed correctly, minimizing risks of further issues.

While the initial cost may seem high, replacing a faulty circuit board can extend the life of your hot tub and improve its performance, making it a worthwhile investment.

How Long Do Hot Tub Circuit Boards Last?

The life of the circuit board of the hot tub is affected by many factors, and a fixed number of years cannot be given. ‌

The life of hot tub circuit board is affected by many factors such as raw material quality, production process, environmental factors and so on. High-quality substrates and copper foils effectively reduce the risk of aging and failure, while high-precision production processes and strict quality control reduce defects and improve long-term stability. In addition, environmental factors such as humidity, temperature, and the presence of contaminants can also cause the board to age. Therefore, maintaining appropriate environmental conditions, such as controlling humidity and temperature, is an effective measure to extend the shelf life of the circuit board.

For electric water heaters, their service life is between 5-15 years, which indicates that the life of the circuit board will also be affected by the overall use of the electric water heater. Therefore, the life of the hot tub circuit board not only depends on the quality and maintenance of the circuit board itself, but also is affected by the frequency of use of the water heater, maintenance and other factors. In order to ensure the safety and effectiveness of use, it is recommended to regularly inspect and maintain the hot tub and its circuit board, follow the manufacturer’s recommendations for maintenance and replacement to ensure the best performance and safety.

How Do I Know If My Circuit Board Is Bad?

Recognizing the signs of a failing circuit board early can help prevent further damage and costly repairs. Here are common indicators to be done if your DB Technology Hoot Circuit Board might be malfunctioning:

1. Visual inspection

Carefully observe whether the surface of the circuit board has obvious physical damage, such as burning, cracking, corrosion, etc. If an anomaly is found, it is likely a sign of damage to the circuit board.

2. Test voltage

Use a digital multimeter or multifunction tester to measure the voltage between each key point on the circuit board. If there is an abnormal voltage value (such as short circuit, open circuit, or abnormal high and low), it indicates that there may be a problem with the board.

DB Technology Hoot Circuit Board Replacement

3. Tracking signals

When some functions on the circuit board do not work properly, devices such as oscilloscopes or logic analyzers can be used to track the signal path and determine whether there is interruption or interference.

4. Component testing

If there are removable components on the circuit board, such as integrated circuit chips, electrolytic capacitors or diodes, you can use test instruments to test these components to confirm whether their performance is normal.

5. Thermal imaging

Use an infrared thermal imaging camera to scan the surface of the circuit board to detect whether there are hot spots or abnormal temperature areas. This can help detect possible faults or overload conditions in the board.

Please note that if you do not have the relevant expertise and skills, it may be risky to determine whether the board is damaged. It is recommended to consult a professional or seek the help of professional repair services like Best Technology when it is necessary to judge or repair the circuit board.

Alternatives to the Hoot Circuit Board

If a replacement Hoot Circuit Board is not readily available or doesn’t fit your budget, consider alternative options that offer comparable performance:

  • Generic Replacement Boards

Some manufacturers produce universal circuit boards compatible with multiple hot tub brands. These boards can serve as a suitable alternative but may require additional wiring adjustments.

  • Upgraded Boards

You can upgrade your circuit boards with enhanced features, like advanced control settings or energy efficiency improvements, are available. Though slightly more expensive, these boards can enhance your hot tub experience.

  • Used or Refurbished Boards

Pre-owned or refurbished circuit boards can be a cost-effective solution. Ensure that these boards are tested and come with a warranty to avoid future issues.

Choosing the right alternative depends on your hot tub’s compatibility and your specific needs. Always verify compatibility before purchasing a replacement.

Step-by-Step Guide to Replacing Your Hoot Circuit Board

Replacing your DB Technology Hoot Circuit Board can be a manageable task with the right tools and guidance. Here’s a simple step-by-step guide:

1. Before starting, turn off the power supply to your hot tub at the breaker box to avoid electrical shock.

2. Locate the control box that houses the circuit board. Remove the cover using a screwdriver.

3. Before disconnecting anything, take detailed photos of the circuit board and wiring connections. This will help you reconnect everything correctly.

4. Carefully remove the connectors and wiring attached to the circuit board. Unscrew any mounting screws holding the board in place.

5. Position the new Hoot Circuit Board in place and secure it with screws. Reconnect all wires and connectors as per your reference photos.

6. Turn the power back on and test all functions of the hot tub to ensure the new board is working correctly. Check for any error messages or irregular operation.

7. Once everything is functioning as expected, replace the control box cover securely.

DB Technology Hoot Circuit Board Replacement

Replacing a circuit board can be a straightforward process, but if you’re unsure, consulting Best Technology is always a good idea to ensure safety and proper installation.

Why Choose Best Technology for Hoot Circuit Board?

Selecting the right supplier for your DB Technology Hoot Circuit Board replacement or upgrade can greatly impact the performance and longevity of your hot tub. Choosing Best Technology as your go-to provider for Hoot Circuit Boards because:

  • No stencil, setup fee
  • Free capacitors and resistors for prototype customers
  • Rapid prototyping: 24-hour delivery, 8-hour rush service
  • Dust-free workshop for PCB and PCBA assembly
  • Over 2000+ customers all around the world
  • Dedicated one-on-one service with WIP production updates
  • ISO9001, ISO13485, IATF16949 certificated
  • Factory in Vietnam, US, China

You are welcome to contact us any time for PCB projects!!

You may also like

What is PCB Pinner? – Best Technology
Thursday, September 19th, 2024

What is a Pinner in PCB?

What is a Pinner in PCB? A Pinner in PCB manufacturing is a specialized tool or mechanism used to align and secure various components or layers during the assembly process of printed circuit boards (PCBs). It ensures that all elements, whether they are individual electronic components or stacked layers in multilayer boards, remain accurately positioned until the final bonding or soldering process is completed. In simple terms, it acts as a “placeholder,” holding everything firmly in place to avoid any shifts or misalignments that could compromise the performance or quality of the PCB.

Pinners can be manual, semi-automatic, or fully automated, depending on the scale and precision requirements of the production line. While manual pinners are often used for small-scale production or prototypes, automatic pinners are prevalent in large-scale manufacturing due to their high efficiency and accuracy.

What is PCB Pinner? - Best Technology

Function of PCB Pinner

The function of a PCB pinner is primarily to align and secure PCB layers or components during the assembly process, ensuring that everything is held in place precisely before final soldering or bonding. Here’s a breakdown of its essential functions:

1. Component Placement Stability

One of the key functions of a PCB pinner is to provide stability to the components placed on the PCB. Whether it is a surface-mounted component, a through-hole part, or different layers in a multilayer PCB, the pinner holds these elements firmly in place to prevent any shifting during further processes such as soldering, wave soldering, or selective soldering.

2. Accurate Layer Alignment

In multilayer PCB manufacturing, aligning the various layers accurately is a complicated but crucial task. A pinner ensures that each layer is positioned perfectly over the others, preventing any misalignment that could result in short circuits, poor signal transmission, or weak connections between layers. In multilayer PCBs, where hundreds of traces may overlap in different layers, alignment is critical to ensure the board functions correctly.

3. Minimization of Errors

Errors such as misaligned components or layers can lead to significant issues like short circuits or signal interference in PCBs. By keeping everything in place with high precision, the PCB pinner reduces the chances of human or machine errors during assembly.

4. Support During Automated Processes

In automated assembly lines, the PCB pinner often works in coordination with other machines such as pick-and-place machines and soldering stations. While components are being positioned by a robotic arm or soldering is taking place, the pinner ensures that none of the components shift out of alignment.

5. Enabling High-Density PCB Designs

As PCB designs become more complex and denser with miniaturized components, the risk of misalignment increases. A pinner helps overcome this challenge by holding even the smallest components in the exact position, preventing misplacement in densely packed circuits.

6. Enhancing Overall Manufacturing Efficiency

Using a pinner enhances the overall efficiency of the manufacturing process. It allows other automated systems to perform their functions more swiftly because there’s less risk of a production halt due to misaligned components.

7. Reducing Rework and Scrap

The precision offered by PCB pinners means there are fewer instances of defective boards, which in turn means less rework and lower scrap rates. By ensuring proper alignment, pinners contribute to a higher yield of functional PCBs, reducing the amount of waste produced during manufacturing.

Types of PCB Pinner

The selection of a PCB pinner depends on the specific requirements of the assembly process, the type of components being used, and the complexity of the PCB design. Below are some common types of PCB pinners:

Through-Hole Pinners

These are designed for use in through-hole PCB assembly, where components have leads that pass through holes in the board. Through-hole pinners secure these leads in place, ensuring they remain stable during the soldering process. They are especially useful for components with multiple leads, such as integrated circuits.

What is PCB Pinner? - Best Technology

Surface Mount Pinners

Surface mount technology (SMT) is a widely used method for mounting components directly onto the surface of a PCB without the need for leads to pass through the board. Surface mount pinners are specifically designed to hold these components in place on the board’s surface, preventing movement during reflow soldering.

High-Precision Pinners

Certain PCB assemblies require extremely high precision, especially in fields like aerospace or medical devices. High-precision pinners are engineered to hold components with micron-level accuracy, ensuring even the slightest misalignment is avoided. These pinners are often used alongside advanced placement machines that demand exact component positioning.

Custom Pinners

In some cases, standard pinners may not meet the unique needs of a specific PCB assembly process. Custom pinners can be designed and manufactured to accommodate specialized component shapes, board layouts, or particular assembly requirements. These pinners are typically developed through collaboration between PCB designers and pinner manufacturers to meet the exact specifications of the production line.

How Does a PCB Pinner Work?

A PCB pinner works by using pins or clamps to hold the PCB layers or components in place during the assembly process. When layers of a PCB are stacked or when components need to be placed with high precision, the pinner ensures they remain aligned. The pins are positioned strategically to avoid any areas where components will be placed or where soldering will occur. Once the components are secure, the pins can be removed without disturbing the alignment, leaving the PCB ready for soldering or bonding.

In automated systems, the pinner operates in sync with other assembly tools, such as pick-and-place machines or soldering stations, making the entire process seamless and highly efficient.

Advantages of Using PCB Pinner

There are several key advantages to using a PCB pinner in the manufacturing process:

1. PCB pinners ensure that all components and layers are perfectly aligned, reducing errors that could lead to faulty boards.

2. By securing the components, the pinner allows other machines to work faster without the risk of misalignment, speeding up the overall assembly process.

3. A well-aligned PCB means fewer errors and less rework. This not only saves time but also reduces material waste and associated costs.

4. Consistently aligned components lead to more reliable PCBs, which translates into higher product quality and fewer defects.

5. PCB pinners can be used with various PCB types, including single-layer, multilayer, and flexible PCBs.

What is Pinner in PCB Factory?

In a factory setting, where large volumes of PCBs are produced, PCB pinners are often integrated into the assembly line as part of a highly automated process. These pinners work in conjunction with other assembly machines, such as pick-and-place machines and soldering stations, to create a streamlined manufacturing process. By securing the PCB layers or components in place, pinners prevent shifts that can occur due to vibration, movement, or machine interaction, ensuring that the assembly process proceeds without errors.

In sectors where precision is vital, such as aerospace, automotive, medical devices, and telecommunications, even the slightest misalignment can lead to failure or reduced performance. PCB factories that operate in these high-precision fields rely heavily on pinners to ensure that all components are perfectly placed and secured before final assembly. The reliability and quality of the final PCB often depend on how well the pinner performs its job in maintaining alignment throughout the process.

You may also like

Street Light MCPCB,MCPCB Factory&Manufacturer
Wednesday, September 18th, 2024

Being the market leader, we offer high quality range of LED Street Light MCPCB or Street Light PCB. These PCB are manufactured using high grade raw material under the supervision of expert and professional team with international quality standards.

Street Light

Street Light PCB

5w12V led street light mcpcb,size:14x14mm ① 10mm 5W 12V 2C2B 300mA 120- 130lm+/W
10w24V led street light mcpcb,size:18x18mm ① 13mm 10W 24V 4C2B 300mA 120-130lm+/W
15w30V led street light mcpcb,size:19x19mm ① 16mm 15W 36V 6C2B 300mA 120-130lm+/W
20w30V led street light mcpcb,size:24x24mm 019mm 20W 30V 5C4B 600mA 120-130lm+/W
20w30V led street light mcpcb,size:56x40mm 24x24mm 20W 30V 5C4B 600mA 120- 130lm+/W
30w30V led street light mcpcb,size:56x40mm 24x24mm 30W 30V 5C6B 900mA 120-130lm+/W
50w32V led street light mcpcb,size: 56x40mm 24x24mm 50W/4 32V 5C9B 1.5A 120-130lm+/W
50w42V led street light mcpcb,size: 56x40mm 24x24mm 50W/4 42V 7C7B 1A 120-130lm+/W
50w32V led street light mcpcb,size:56x40mm 24x24mm 50W 32V 5C10B 1.5A 120-130lm+/W
200w36V led street light mcpcb,size:194mm ① 185mm 200W 36V 10C5BM 1.5Ax4 130- 140lm+/W

These Street Light PCB are available for our valuable customers at affordable cost in market. Due to their precise design and high functionality our offered materials are ideal for making wide variety of led street light of various watt and models.

Street Light MCPCB

MCPCB production process

Substrate preparation: Select appropriate metal substrates, such as aluminum, iron, copper, indium copper, tungsten-molybdenum alloy, etc., as the base of MCPCB. These metal substrates have good thermal conductivity and are the core components of MCPCB.

Insulating dielectric layer coverage: Cover the metal substrate with an insulating dielectric layer. Common insulating dielectrics include modified epoxy resin, polyphenylene ether, polyimide, etc. This layer not only provides the insulation performance required by the circuit, but also enhances the mechanical strength and durability of the MCPCB.

Copper layer laying: Lay the copper layer on the insulating dielectric layer to form the conductive part of the circuit. The copper layer is made through the production process of printed circuit boards, and the corresponding circuits are laid according to the needs of electronic circuits.

Thermocompression bonding process: The metal substrate, insulating dielectric layer and copper layer are combined together through the thermocompression bonding process to form the basic structure of the MCPCB. This step ensures the close bonding between the layers and improves the stability and reliability of the MCPCB.

Circuit production: According to the design requirements, circuit lines are made on the copper layer. This includes drilling, dry film covering, exposure, development and other steps to ensure the accuracy and conductivity of the circuit line.

‌Inspection and testing‌: Inspect and test the completed MCPCB to ensure that its performance meets the design requirements. This includes inspection of the circuit surface and aluminum base surface, as well as testing of conductivity and insulation performance.

What are the advantages of mcpcb

Excellent heat dissipation performance: MCPCB usually adopts aluminum substrate or copper substrate, which has good thermal conductivity, can effectively dissipate the heat generated by electronic components, and improve the stability and reliability of the circuit board. This excellent heat dissipation performance makes MCPCB particularly suitable for high switching power applications, such as LED lighting, power modules, automotive electronics and power electronics, among which LED lighting is one of the most widely used fields of MCPCB.

‌High mechanical strength: The base material of metal core PCB is thicker, with high mechanical strength and bending and torsion resistance, which is conducive to the assembly and transportation of electronic products. This feature makes MCPCB perform well in environments that need to withstand greater physical pressure or frequent movement.

‌Reliable welding performance: After the surface of metal core PCB is coated with solder paste, it has good welding performance and is suitable for surface mount technology (SMT) and plug-in welding technology. This feature improves the applicability of MCPCB in PCBA processing, making it a preferred material in the manufacture of modern electronic products.

‌Corrosion and wear resistance: Metal core PCB has strong corrosion resistance and wear resistance, which is suitable for electronic products in harsh environments. This feature enables MCPCB to work stably for a long time under high temperature, humidity or other extreme conditions, improving the durability and reliability of the product.

‌Space saving‌: Compared with traditional FR-4 substrates, MCPCB has higher heat dissipation performance, which can design smaller electronic products and save space. This advantage is particularly important in devices with limited space, such as portable electronic devices such as smartphones and tablets.

‌Improve reliability‌: Good welding performance and corrosion resistance can improve the reliability and stability of the circuit board and reduce the failure rate. This is especially important in critical systems and equipment, such as medical equipment, industrial control systems, etc., where reliability and stability are crucial factors.

What accessories does a street lamp have?

  1. Lamp holder. The lamp holder of a street lamp is usually an LED lamp, which is the core part of the street lamp. It is responsible for converting electrical energy into light energy to provide lighting services for people. The quality of the lamp holder directly affects the lighting effect and life of the street lamp.
  2. Lamp pole. The lamp pole is the part that supports the lamp holder. It is usually made of metal and has various shapes such as conical poles and prismatic poles. Street lamps in different scenes may require lamp poles of different heights and shapes to meet lighting needs. In addition, safety issues should also be considered, such as anti-theft design and prevention of excessive wind force. In addition, installation accessories such as clamps are also used to fix the lamp pole.
  3. Light source. The light source is an important part of the street lamp, including LED lamp beads, bulbs, etc. The choice of light source is related to key indicators such as brightness, energy consumption and life of the street lamp. At present, LED light sources are widely used in street lamps due to their high efficiency, energy saving and long life.
  4. Electrical control device. The electrical control device includes components such as ballast, trigger, light control switch, etc., which are used to control the working state of the street lamp and protect the circuit safety. For example, light-operated switches can automatically turn streetlights on and off according to ambient light, saving energy. In addition, some advanced streetlights may also be equipped with intelligent control systems to achieve remote monitoring and management.
  5. Installation accessories. These include small parts such as clamps and screws. Although these parts are not conspicuous, they are very important for the installation and maintenance of streetlights. For example, clamps are used to fix the connection between the top of the lamp pole and the lamp head, and screws are used to fix various parts to ensure the stability and safety of the streetlight.

What are the street lights?

Ordinary street lights
Ordinary street lights are the most common lighting facilities on the streets. They usually use light bulbs or LED lamp heads and are installed on light poles to provide basic lighting for pedestrians at night.

Solar street lights
Solar street lights are an environmentally friendly street light that uses solar panels to absorb solar energy, converts energy into electrical energy, stores it in batteries, and lights up the street lights at night through control devices. Solar street lights do not need to be connected to an external power supply, have low maintenance costs, and are widely used in parks, suburban roads and other places.

LED street lights
LED street lights use light-emitting diodes as light sources, which have the advantages of high efficiency, energy saving, long life, safety and reliability. LED street lights have good lighting effects and can be intelligently adjusted according to different environments. They are the first choice for modern urban street light renovation.

Landscape street lights
In addition to the basic lighting function, landscape street lights also emphasize artistic decorative effects. It is usually integrated with the surrounding environment, with unique design and diverse shapes, and is used to increase the beauty and cultural atmosphere of street landscapes.

Multifunctional street lights
Multifunctional street lights integrate multiple functions such as lighting, monitoring, and communication. In addition to providing lighting, this type of street lamp is also equipped with cameras, display screens and other devices for urban management and security monitoring.

You may also like

What is Copper Clad Laminate (CCL)?
Friday, September 13th, 2024

What is Copper Clad Laminate?

Copper clad laminate short for CCL, it is a foundational material in the electronics industry. It consists of a thin copper foil bonded to one or both sides of a non-conductive substrate like fiberglass or resin. This combination creates a durable and conductive material that serves as the base for creating printed circuit boards (PCBs). The copper layer facilitates the transmission of electrical signals, while the insulating substrate supports the board’s structural integrity.

CCL comes in various thicknesses and types, depending on the application. It’s a critical part of most electronic devices, from smartphones to industrial machines. Its main role is to support the etching of circuit patterns, where unnecessary copper is removed, leaving conductive paths that enable electrical connections. Below is a structure of a double sided copper clad laminate:

What is Copper Clad Laminate (CCL)?

What is Copper Clad Board Used For?

Copper clad boards are widely used in PCB manufacturing. Their role is to provide a surface for electrical components to connect through conductive copper traces. CCLs are widely used in applications including, but not limited to:

  • Electronic products: Copper clad board is the basic material of electronic products, used to manufacture various electronic equipment circuit board, such as TV, radio, computer, computer and so on.
  • Communication equipment: Mobile phones, tablet computers, routers and other communication equipment a large number of copper clad laminate.
  • Computers and peripherals: Computer motherboards, graphics cards, hard disks, etc., need a large number of copper-clad boards.
  • Automotive electronics: Electronic equipment in modern automobiles, such as ABS, air conditioning, navigation, etc., need to use copper clad board.
  • Military: Electronic components in military equipment also need to use a large number of copper-clad boards.

In addition, copper clad boards are also used in industrial control, medical instruments, national defense, aerospace and other fields. With the development of technology and the increase of application demand, the use of copper clad plate in electronic products is more and more extensive, which plays an important role in promoting the renewal of social production and living tools. For example, the development of the Internet of Things and artificial intelligence, as well as the application of 5G communication technology, have greatly increased the demand for copper clad sheets. ‌

What is the Market Report for Copper Clad Laminate?

The market for copper clad laminate has grown steadily due to the increasing demand for consumer electronics, automotive advancements, and telecommunication developments. The global CCL market is expected to expand significantly over the next few years, driven by technological advancements in 5G, renewable energy systems, and electric vehicles.

Key players in this market are working to develop lighter, thinner, and more efficient CCLs to keep pace with the growing need for high-performance electronics. Manufacturers exploring new materials and production methods to reduce costs while enhancing performance. The future looks promising, with a forecast of rapid growth driven by the electronics industry’s evolution.

Is Copper Clad Better Than Copper?

Copper clad laminate is a more practical option for PCBs than solid copper because it provides the required conductive properties at a lower cost. While copper is an excellent conductor, using copper as metal core PCBs would be expensive and impractical. CCL offers the same conductivity benefits but adds a lightweight, non-conductive layer that provides structural support.

What is Copper Clad Laminate (CCL)?

Electrical Conductivity and Cost Efficiency

While pure copper has excellent electrical conductivity, copper clad laminates (CCLs) provide a balance between cost and performance. In a copper clad board, only a thin copper layer is used, which significantly reduces the amount of copper needed compared to using solid copper. For applications like PCBs, where large surfaces need copper conductivity but do not require the full thickness of copper, copper clad is more efficient and economical.

Thermal Management

Copper clad materials often have better thermal management properties due to the substrate’s ability to dissipate heat while maintaining the copper layer’s high conductivity. Pure copper, while an excellent heat conductor, may not offer the same level of thermal dissipation when used alone in complex electronic assemblies. For instance, in multi-layer PCBs, copper clad boards help balance the need for heat management and conductivity by using the copper layer efficiently while the base material manages thermal stress.

Structural Support and Durability

Copper clad laminates provide added structural support compared to pure copper sheets. The non-conductive substrate, often made of fiberglass, resin, or other materials, adds durability and rigidity to the thin copper layer. By contrast, is soft and flexible, making it unsuitable for structural applications without some form of backing material.

Corrosion Resistance

Copper, though highly conductive, is prone to oxidation and corrosion over time, which can affect its performance in certain environments. Copper clad laminates, however, are often treated with protective coatings or layered with other materials to enhance their resistance to corrosion.

Weight Considerations

Another important factor is weight. Copper is a dense metal, and using thick copper layers can significantly increase the weight of a product. In contrast, copper clad laminates achieve high conductivity with only a fraction of the copper’s weight.

How Thick is Copper Clad Board?

The thickness of a copper clad board depends on its intended application. Standard copper thicknesses for CCL are measured in ounces per square foot, typically ranging from 0.5 oz to 2 oz per square foot. This translates to about 17 to 70 microns. For high-power applications, thicker copper, such as 3 oz or more, may be used.

What is Copper Clad Laminate (CCL)?

On the other hand, the thickness of the laminate itself can also vary, depending on whether it’s a single-layer, double-layer, or multilayer board. The insulating substrate can range from 0.2 mm to several millimeters, depending on the application. The total thickness of the copper clad board is a combination of the copper foil and the insulating material.

How Much Does Copper Cladding Weigh?

The weight of copper cladding is typically expressed in ounces per square foot. A common weight is 1 oz of copper, which means that a square foot of copper clad board has a 1-ounce copper layer. This is approximately 35 microns thick. Heavier copper cladding, such as 2 oz or 3 oz, is also used for applications that require higher current-carrying capacity or greater durability.

It’s important to balance the weight with the application needs. Higher copper weight provides better conductivity and durability but adds cost and weight to the final product. Therefore, the choice of copper weight in CCL depends largely on the required performance and cost considerations.

Copper Clad Laminate Price

The price of copper clad laminate varies based on several factors such as copper thickness, substrate material, board size, and production volume. Standard-grade CCL is more affordable, while high-end options with specialty substrates like Teflon or ceramic tend to be more expensive.

On average, copper clad laminate costs range from $5 to $15 per square meter for common types. However, high-performance laminates designed for demanding environments, such as those used in aerospace or military applications, can be significantly more expensive.

Global market trends, material shortages, and the demand for electronics heavily influence pricing. Recently, fluctuations in copper prices and supply chain disruptions have impacted the cost of CCL. Still, bulk orders or long-term contracts with suppliers can help reduce costs for large manufacturers.

How to Cut Copper Clad Laminate?

CCL requires careful handling to ensure precise cuts without damaging the copper layer or the substrate. The cutting method will vary depending on the thickness and material, but overall, clean and accurate techniques are key.

What is Copper Clad Laminate (CCL)?

1. Choose the Right Tools

    The tools you use depend on the thickness of the copper clad laminate. Thin CCL can be cut with a utility knife, while thicker boards require specialized tools like a PCB shear or laser cutter.

    2. Prepare the Work Area

    Before cutting, ensure that your workspace is clean and stable. Use a flat surface to keep the laminate steady during cutting. For larger boards, use clamps to secure them in place. Always wear protective gear like goggles and a mask, especially when working with power tools to avoid dust and debris.

    3. Measure and Mark the Cutting Line

    Accurate measurements are crucial for a clean cut. Use a ruler or measuring tape to mark the cutting line and draw it clearly with a permanent marker. Double-check your measurements to avoid mistakes before cutting.

    4. Score the Copper Clad Laminate

    For thin laminates, use a utility knife to score along the marked line. Score the copper side first, then flip it over and score the substrate. Once both sides are scored, gently bend the laminate along the line until it snaps cleanly.

    5. Cut Thick Copper Clad Laminate

    For thicker CCL, use a guillotine PCB shear or a Dremel tool. A PCB shear provides a clean, straight cut, while a Dremel is useful for cutting complex shapes. For high precision, a laser cutter is the best choice, especially for intricate designs.

    6. Deburr and Smooth the Edges

    After cutting, the edges may be rough. Use a file to smooth out any jagged areas, then finish with fine-grit sandpaper.

    Safety is important when cutting CCL. Fiberglass and other substrate materials can produce harmful dust. Always wear a dust mask and safety goggles, and work in a well-ventilated area to minimize exposure to particles. In addition to this, avoid over-scoring the laminate, which can damage the substrate or cause copper peeling. Make sure to apply consistent pressure while cutting to prevent uneven edges. Always prioritize safety by using proper protective gear to avoid injuries.

    Copper Clad Laminate Suppliers

    Numerous suppliers provide copper clad laminate globally. The selection of a supplier depends on factors like the type of laminate, application requirements, and volume needed. Some well-known suppliers include:

    • Kingboard Laminates
    • Panasonic
    • Isola Group
    • Nan Ya Plastics
    • Shengyi Technology
    • Rogers Corporation
    • Ventec International Group
    • Doosan Corporation
    • Iteq Corporation
    • Mitsubishi Gas Chemical

    With over a decade of effort and experience, Best Technology has been actively contributing to the growth of this business. Certified with ISO9001, ISO13485, IATF16949, UL, and RoHS, the company is fully capable of delivering high-quality, eco-friendly PCBs and various types of copper clad laminates at competitive prices.

    You may also like

    Does A Circuit Board Base Have Low Resistance?
    Tuesday, September 10th, 2024

    What is Resistance in a Circuit Board?

    Resistance in a circuit board determines how easily electric current flows through the board. Every component and trace on the board offers some resistance, but the goal is to minimize it. Resistance happens when the flow of electrons is blocked or slowed down by the material they travel through. This blockage causes energy loss, often as heat.

    In printed circuit boards (PCBs), low resistance is preferred in traces and paths to ensure smooth current flow. However, resistors are intentionally added in circuits to control and manage current flow, protecting sensitive components.

    Does A Circuit Board Base Have Low Resistance?

    What is the Base of a Circuit Board?

    The base of a circuit board is the foundation on which components are mounted and connected. The copper layers, laminated onto the base, provide the conductive pathways that allow current to flow between components. It usually consists of layers of different materials, including a non-conductive substrate like fiberglass, often referred to as FR4. Some other materials also can be used as the base of circuit board, like:

    • Glass fiber cloth substrate: commonly used in the production of double panels and multi-layer boards, with good mechanical properties and cost effectiveness.
    • Paper substrate: lower cost suitable for cost-sensitive applications.
    • Epoxy resin substrate: it has good mechanical properties and thermal stability, widely used in electronic products
    • Polyimide substrate: it has excellent high temperature resistance, suitable for high performance electronic products.
    • Polytetrafluoroethylene (PTFE) substrate: very high temperature resistance and low dielectric constant, suitable for high frequency and high temperature environments.
    • Ceramic substrates: such as alumina, aluminum nitride, etc., with high thermal stability and low dielectric constant, suitable for extreme environments.
    • Teflon (ETFE) substrate, it has good corrosion resistance, high frequency properties and low dielectric constant.
    • Metal substrates: metal materials like aluminum or copper are always serve as the base of metal core PCBs, they have very good thermal conductivity, and suitable for high power applications where need good heat dissipation.

    How Does a Basic Circuit Board Work?

    The basic circuit board connects various electronic components through conductive paths called traces, and performs specific functions through the interaction of electronic components. These tracks are made of copper and are designed to create specific circuits that control the flow of electricity. The circuit board uses insulating materials to isolate the conductive layer of copper foil on the surface, so that the current flows in each component along the pre-designed path to complete the functions of work, amplification, attenuation, modulation, demodulation, coding and so on.

    Components such as capacitors, resistors, transistors, and diodes are soldered onto the board. The current flows through the components, following the paths designed in the layout, executing the required tasks, such as powering an LED or processing signals.

    For the circuit to work, all components must be properly connected and powered. Any break in these connections can disrupt the flow of current, leading to malfunctions.

    Does A Circuit Board Base Have Low Resistance?

    The main components and functions of the circuit board:

    • Pad – metal holes for welding the pins of components.
    • Through hole – there are metal through holes and non-metal through holes, used to connect the component pins between each layer.
    • Conductor – the conductive path connecting electronic components.
    • Components – such as resistors, capacitors, inductors, etc., are connected to each other by conducting lines.
    • Connector – used to connect external devices.
    • Electrical boundary – defines the electrical characteristics of the board.

    Does an Open Circuit Have Low Resistance?

    No, an open circuit has high resistance, often considered infinite.

    Open circuit refers to the circuit state when no current passes between two points in the circuit or is connected by a conductor with a very large impedance value (or resistance value). When the branch between two points in the circuit is open, the potential difference between the two points is called “open voltage” and can be measured by a voltmeter. In the open state, because there is no current flow, the resistance is very high, this is because the current path in the open circuit is interrupted, resulting in the current cannot flow, so that the resistance in the open state is extremely high ‌

    In contrast, a short circuit refers to the situation where the current does not pass through the electrical appliance and directly constitutes a path. In a short circuit, the resistance in the circuit is small, because the current flows directly through the wire, rather than through the load, resulting in a large current. In this state, the fuse may automatically blow due to excessive current, to prevent the wire from causing a fire due to heat ‌

    How to Tell If a Circuit Board is Shorted?

    Identifying a shorted circuit board involves looking for signs like:

    • Burn marks or discoloration on the board.
    • Swollen or damaged components.
    • Overheating, causing the board to feel hot to the touch.
    • The device or board not powering on or malfunctioning.

    To confirm a short, a multimeter can be used. By measuring the resistance between points where there should be separation, a very low resistance could indicate a short. This can help pinpoint faulty components or traces.

    Does A Circuit Board Base Have Low Resistance?

    How to Check Resistors on a Circuit Board?

    To check resistors on a circuit board, you can use a multimeter in resistance mode.

    • Turn off the power to the board and discharge capacitors to avoid any residual current.
    • Set the multimeter to the appropriate resistance range.
    • Place the probes across the resistor’s terminals and read the value displayed on the meter.

    Compare this value with the expected resistance value, usually printed on the resistor or found in the circuit’s schematic. A large discrepancy could indicate a faulty resistor.

    How Are Circuit Boards Grounded?

    Circuit boards are grounded by connecting the ground plane, often a large layer of copper, to a grounding point. The grounding modes of the circuit board mainly include single point grounding, multi-point grounding, floating ground and virtual ground. ‌

    • Single-point grounding

    Single-point grounding ‌ is suitable for low-frequency circuits where only one physical point in the entire circuit system is defined as the grounding reference point and all other points that need to be grounded are directly connected to this point. This approach can reduce common ground impedance coupling and low-frequency ground loop interference, and is usually used for circuits with frequencies less than 1MHz.

    • Multi-point grounding

    Multipoint grounding ‌ is suitable for high-frequency circuits, where each ground point of the electronic device is directly connected to the nearest ground plane (that is, the metal base plate of the device). This method can reduce the interference generated by the common ground impedance, and also reduce the parasitic capacitance and inductance, which is usually used for circuits with frequencies greater than 10MHz.

    • Floating ground

    ‌Floating ‌ that is, the ground of the circuit is connected to the ground without a conductor, but at a higher potential. The advantage of floating ground is that the circuit is not affected by geoelectrical properties, and can prevent electromagnetic interference caused by the coupling of common ground impedance circuits. However, the disadvantage of this method is that it is affected by the parasitic capacitance, which leads to the change of ground potential and increases the inductive interference to the analog circuit.

    • Virtual ground

    Virtual ground ‌ is similar to floating ground and can be understood as the “floating ground” when the operational amplifier is short and broken.

    What is the Rule for Resistance in a Circuit?

    The fundamental rule of resistance is governed by Ohm’s Law: V=IR, where voltage (V) is equal to the current (I) multiplied by resistance (R). This shows that the resistance directly affects how much current flows for a given voltage.

    In circuits, resistors are used to control current, and their value determines how much current is allowed through. For example, higher resistance lowers the current flow, while lower resistance allows more current to pass.

    With over 18 years as an industry leader, Best Technology is one of the most experienced PCB and PCB assembly manufacturer in Asia. We are highly specialized not only in quick-turn PCB prototype and PCB assembly, but also medium and small volume PCB fabrication. In Best Technology, you can enjoy a full-comprehensive one-stop service from PCB design, layout, PCB fabricate, PCB assembly, function testing and delivery. We always try our best to fabricate your PCB with copper clad laminate with the highest quality to meet your demands.

    If you have any questions, please feel free to contact us with sales@bestpcbs.com, we will be happy to help you.

    You may also like

    PCB Quote Packaging is What Type of Engineering?
    Tuesday, September 10th, 2024

    PCB Full Form

    PCB stands for Printed Circuit Board, a key component in almost all electronic devices. It connects and supports electronic components using conductive tracks, pads, and other features. The design and production of PCBs require precise engineering, as they are crucial for the functionality of the final product.

    What is PCB Quote Packaging?

    PCB quote packaging refers to the process of gathering and organizing all the details needed to estimate the cost of producing a PCB. This includes not only the design specifications but also the materials, manufacturing processes, and other engineering considerations. It’s not just a financial calculation but a complete engineering analysis that ensures the quote is accurate, feasible, and optimized for production.

    The quote must consider every detail that affects production—like material types, size, complexity, and production volume. The aim is to package all these details into a clear, comprehensive quote, ensuring the client understands what they are paying for and why.

    Why is Engineering Important in PCB Quote Packaging?

    Engineering plays a vital role in the PCB quoting process because it’s not just about estimating costs. It’s about understanding the technical requirements and ensuring that every aspect of the design and production is accounted for. Engineers analyze the design, materials, and manufacturing methods to ensure the quote reflects the real cost of production.

    Without engineering insight, a quote could be inaccurate, leading to cost overruns or production delays. Engineers make sure that all technical details, such as layer count, trace width, and component placement, are properly considered.

    What Are the Key Factors in a PCB Quote?

    Several factors come into play when preparing a PCB quote:

    PCB Quote Packaging is What Type of Engineering?

    1. Type of manufacturing process

    The technical type of PCB determines its complexity and cost. For example, simple single panels cost much less than multi-layer panels, while flexible circuits (FPC) or rigid and flexible panels require more complex manufacturing processes and naturally cost more. In addition, whether advanced technologies such as microvias, laser drilling, blind holes or buried holes are required can also have a significant impact on the quotation.

    2. Material type

    Materials are an important part of PCB costs. Common materials include FR4, ceramics, metal substrates, etc. FR4 is the most common base material and is suitable for most conventional applications, but for high-frequency, high-temperature environments, ceramic or metal-based materials may be more suitable, but their price is relatively high. Choosing the right material not only affects the performance, but also directly affects the cost.

    3. IPC level

    IPC grades reflect the quality standards of PCB manufacturing, commonly used are IPC-A-600 grades 1, 2 and 3. The higher the grade, the more stringent the manufacturing requirements, and the corresponding increase in cost. For example, grade 3 PCBS are usually used in high-demand fields such as aerospace and medical equipment, which require higher accuracy and quality control, so the price is higher.

    4. Circuit design

    PCB circuit design complexity directly affects manufacturing costs. Including wire width, spacing, hole size and so on, the production process has put forward different requirements. High density interconnect (HDI) boards typically require more elaborate wiring techniques and may involve the use of microvias, which will increase the difficulty and cost of manufacturing.

    5. PCB size and yield

    The size of the PCB directly affects the amount of material used, and the larger the board, the more material is needed. In addition, the yield is also an important factor affecting the quotation. PCB manufacturing with complex design or high density lines is prone to defects, resulting in decreased yield. That means manufacturers may need to produce more boards to meet orders, increasing costs.

    6. Material thickness

    Different applications require different thicknesses of PCB materials. The standard FR4 thickness is usually 1.6mm, but thinner or thicker boards are sometimes used. Changes in material thickness can affect the overall cost, especially if thicker sheets require special processing or higher strength, and manufacturing expenses will increase accordingly.

    7. Copper thickness

    The copper thickness in the PCB usually has a standard choice, such as 1oz, 2oz or even thicker copper layers. The higher the copper thickness, the better the conductivity of the PCB, suitable for high-current applications, but the increase in copper thickness will significantly increase the manufacturing cost, especially in the plating and etching process requires additional materials and processes.

    8. Stack-up method

    The stacking mode determines the number of layers and the interlayer structure of the PCB. Complex multilayer boards or HDI boards require more complex lamination processes. For example, the lamination method may involve multiple pressing, the use of prepregs or special insulation materials. Each additional layer requires more manufacturing steps, resulting in increased costs.

    9. Quantity

    The quantity of the order has a direct impact on the PCB quotation. High-volume production can reduce unit prices by spreading tooling and setup costs, while small-batch orders are typically more expensive due to relatively high production preparation and start-up costs.

    10. Delivery date

    The shorter the delivery time, the higher the quotation. Rush orders require prioritizing production, which can disrupt the plant’s production schedule and require additional resource deployment. To meet urgent delivery deadlines, manufacturers may need to work overtime or speed up production, increasing overall production costs.

    These are just a few examples, but they show how engineering considerations are woven into every part of the quoting process.

    PCB Manufacturing Process

    How Do Engineers Calculate PCB Manufacturing Costs?

    Engineers calculate PCB manufacturing costs by considering the design specifications and the production methods needed to meet those requirements. They start by analyzing the PCB’s layout and design, which determines factors like layer count, trace width, and hole size. Each of these elements has a direct impact on the materials used and the manufacturing process.

    They also consider the assembly process—whether it’s surface-mount or through-hole—and what testing will be required. After evaluating these details, they calculate the costs associated with each step of the manufacturing process. This ensures the final quote is both accurate and comprehensive.

    What Type of Engineer Designs PCBs?

    Engineers who design PCBs typically have a bachelor’s degree or above in electrical engineering, automation, computer science, or a related field ‌ and understand the basics of electronic design, printed circuit board (PCB), and electronics manufacturing in the PCB industry. These engineers need to master PCB design software such as Altium Designer, Eagle PCB, PADS, or CAD, etc., as well as the use of related manufacturing and testing tools. At the same time, they need to have a knowledge of the PCB industry, a certain circuit design and electronic components knowledge, including digital and analog circuits, signal processing, power electronics, embedded systems, communication technology, etc. In addition, holding certificates such as IPC-2221/2222, IPC-A-600/610, and CID (Certified Interconnect Designer) can prove that they have relevant professional knowledge and skills, which can help improve their career competitiveness.

    These engineers also need to have a strong sense of responsibility and team spirit, have good communication and coordination skills, and be able to work effectively with customers, manufacturers, and other team members. For junior engineers, it is recommended to study in a single point of depth, such as PCB design, SI simulation, thermal design, EMC design, product testing, etc., and then start from this advantage point to expand the scope of knowledge

    What Materials Are Considered During PCB Quote Packaging?

    The type of material used for a PCB is a major cost driver. Common materials include:

    • FR4

    This is the most common material used in PCBs due to its balance of cost and performance. It’s versatile and reliable for most standard applications.

    PCB Quote Packaging is What Type of Engineering?
    • Metal Core

    Metal core PCBs are used in applications where heat dissipation is a concern, such as LED lighting. These boards are more expensive due to the metal layer.

    PCB Quote Packaging is What Type of Engineering?
    • Ceramic

    Ceramic materials are used for high-frequency or high-temperature applications. They are more costly but offer better performance in extreme conditions.

    PCB Quote Packaging is What Type of Engineering?

    Each material has its own manufacturing process, which also affects the cost. For instance, metal core boards may require different drilling techniques compared to standard FR4 boards. Engineers must consider these details when preparing a quote.

    How Does the Choice of PCB Manufacturing Methods Impact the Quote?

    The method used to manufacture the PCB can greatly impact the final cost. Common methods include:

    • Surface-Mount Technology (SMT): This is the most common method for modern PCB assembly. It’s efficient and cost-effective for most applications.
    • Through-Hole Technology (THT): This method is used for components that require a stronger mechanical bond. It’s more labor-intensive and, therefore, more expensive.
    • Flexible and Rigid-Flex Manufacturing: These types of PCBs require specialized processes and materials, which can increase the cost.

    Additionally, advanced techniques like laser drilling for microvias or selective soldering for complex assemblies may be necessary for high-precision designs. Each of these methods requires careful consideration, and engineers must choose the best process for both the design and the budget.

    Who Designs PCB?

    Since 2006, Best Technology has been the leading PCB quick turn manufacturer specializing in both PCB prototype and production quantities, initially produced single-sided and double-sided printed circuit boards for the consumer electronics market. Now, we provide not only FR4 PCB, but also some special PCB like flex circuit, metal core PCB, ceramic PCB, extra thin PCB, HDI PCB, IC substrate, busbar PCB, heavy copper PCB and so on. We can make 50 layers PCB, and it is not our limit.

    Nowadays, Best Technology has grown to become a major PCB manufacturer in Asia to serve in diverse customers base such as electronics appliance, communication, educational electronics, power supplies, automations.

    For more information about PCB, or to learn more about the online quote and ordering process, please visit www.bestpcbs.com

    You may also like

    What is Pour Board? What is Copper Pour in PCB?
    Monday, September 9th, 2024

    What is Copper Pour in PCB Design?

    Copper pour, also known as copper coating, refers to filled solid copper on PCB where without trace layout area or idle space. Instead of leaving unused areas bare, copper is poured over them, connecting it to the ground or other designated signals. The main purpose of this process is to reduce the ground impedance, improve the anti-interference ability, reduce the voltage drop. Thereby improving the power supply efficiency, and connect with the ground wire to reduce the loop area. By covering large sections of the board with copper, it also minimizes signal interference and adds a layer of protection to the PCB. Copper pour are essential for designers to maintain signal integrity and reduce unwanted noise.

    What is Pour Board? What is Copper Pour in PCB?

    The process of copper coating is not only very important for digital circuits, because it can effectively reduce the ground impedance, which is particularly important for digital circuits with a large number of spiking pulse currents. However, for analog circuits, the ground wire loop formed by laying copper may cause electromagnetic coupling interference.

    Why Use Copper Pours on Circuit Boards?

    Copper pours offer several advantages that make them an essential part of circuit board design. When creating PCBs, some engineers tend to leave many copper-free areas on the board. But a high percentage of copper-free areas on the PCB can negatively affect the product, making it vulnerable to early damage, when copper pouring comes in handy.

    There are some novices who think that less copper pouring means that the cost will be lower and lower, which is wrong. It is true that the plating area is small, which can save copper, but there is no way to guarantee the quality, and the appropriate amount of copper pouring can improve the quality of the product.

    When the PCB board is placed in the plating tank and the appropriate current is applied, the PCB will show the physical state after dry film coverage. After passing a current, the circuit lines exposed to the outside of the dry film will be plated with copper from the plating tank. The total area of the part of the circuit exposed outside the dry film will affect the value of the current distribution during the plating process, if the bare copper area is large, the current input is uniform, and the current received is more uniform. Therefore, a large area of copper plane must be laid in the design to prevent this from happening. If the total plating area of copper is too small or the pattern distribution is very uneven, the received current will not be uniform. In this way, when powered on, the greater the current, the thicker the copper plating layer (so designed, if only 1OZ is required, then the finished copper thickness can reach 2OZ).

    What is Pour Board? What is Copper Pour in PCB?

    If the gap between current traces is too small, for example about 3mil to 3.5mil, a “clip film” will form between the traces. In other words, the dry film is caught in the middle of the gap, which causes the subsequent base to start the copper in the middle, which can lead to a short circuit if the etching process is not cleaned. In order to maintain the high quality of PCB manufacturing, independent lines must be avoided as much as possible in PCB design and layout. In addition, it is recommended to use a large amount of copper on the entire PCB, if there is a separate line that cannot be covered with copper, then the continuation between the lines must be as wide as possible.

    Advantages of Copper Pour Board

    1. For EMC (electromagnetic compatibility) requirements, a large area of ground or power supply needs to be covered with copper, which will play a shielding role. For some special area, such as protective ground, it plays a protective role.

      What is Pour Board? What is Copper Pour in PCB?

      2. From PCB manufacturing perspective, generally in order to ensure an uniform copper plating, or avoid lamination deformation and bending, manufacturers always pour copper for those less trace layout PCB board.

      What is Pour Board? What is Copper Pour in PCB?

      3. For signal integrity PCB, pour copper gives the high-frequency digital signal a complete return path, and reduce the wiring of the DC network. In another way, pour copper can help to heat dissipation.

      What is Pour Board? What is Copper Pour in PCB?

      Disadvantages of Copper Pour

      1. If the pins of the components are fully covered with copper, the heat dissipation may be too fast, resulting in difficulties in dismantling and repairing the components. Therefore, sometimes in order to avoid this situation, cross connections are used for components (pin contact and pad contact are shown in “+”).

        What is Pour Board? What is Copper Pour in PCB?

        2. Pouring copper in the area around the antenna is easy to cause weak signal, interfered acquisition signal, and the impedance of copper will affect the performance of the amplifier circuit. So the area around the antenna section is usually not covered with copper.

        What is Pour Board? What is Copper Pour in PCB?

        Copper Pour vs Ground Plane

        There’s often confusion between copper pours and ground planes. While both serve similar purposes, they are not the same. A ground plane is a layer dedicated entirely to the ground signal, covering the entire surface of a board layer. It ensures a low-impedance path for electrical signals, minimizing interference.

        Copper pours, on the other hand, are not necessarily tied to the ground. Designers can connect copper pours to any net, including power lines or signal traces. The primary goal of a copper pour is to fill in empty spaces, whereas a ground plane is dedicated exclusively to providing a ground connection.

        Implementation of PCB Copper Pours

        When designing a PCB with copper pours, a few best practices help in optimizing its performance. Here are some useful tips:

        • Assign Copper Pours to Ground First

        When designing, prioritize assigning continuous copper to ground layers over power planes. A solid ground plane improves overall performance, providing a reliable reference for signals and reducing noise. Every PCB should have strong, consistent ground connections.

        • Monitor Trace Currents

        Although reducing inductance is advantageous, flooding the board with copper can sometimes interfere with circuit tuning. Be mindful of traced paths, especially in high-current areas, to maintain proper load control.

        • Maintain Symmetry in Copper Pours

        Ensure copper pours are symmetrical on both sides of the PCB. This balance helps prevent issues like board warping due to uneven expansion or moisture absorption. Symmetrical copper distribution is essential for the board’s structural integrity.

        • Avoid Acute Angles

        Keep copper pours free from long, narrow protrusions or angles sharper than 45 degrees. Such shapes can become weak points, breaking off or acting as antennas during vibration or shock, potentially causing functional failures.

        • Incorporate Relief Features

        Adding slots, anti-pads, and thermal spokes can relieve stress caused by material expansion, especially for large copper pours used on power planes. These features ensure mechanical stability and ease soldering.

        • Carefully Review Design Masks

        Automated copper pour shapes may need manual adjustments to remove artifacts or undesirable patterns around complex components. Always review and fine-tune these masks to achieve optimal results.

        When copper pours are correctly connected to appropriate nets, designers can enhance both the electrical and physical properties of the circuit by distributing copper strategically across the board.

        Copper Pour Clearances and Settings

        When designing a PCB with copper pours, clearances and settings play a crucial role in ensuring proper functionality and avoiding issues like short circuits. Here are PCB copper pour suggestions based on standard PCB board: 

        1. Trace to Copper Pour Clearance

        • Standard clearance: 0.2 mm (200 µm) or 8 mils
        • High-voltage applications: 1 mm (1000 µm) or 40 mils (or more, depending on voltage levels)

        2. Pad to Copper Pour Clearance

        • SMD pads: 0.2 mm to 0.3 mm (8-12 mils)
        • Through-hole pads: 0.3 mm to 0.5 mm (12-20 mils)

        You can adjust these values based on the pad size and the net to which the copper pour is connected.

        3. Copper Pour Width and Thickness

        The width and thickness of the copper pour should be chosen based on the current-carrying capacity of the board:

        • Minimum width: 1.5 mm (60 mils) for low-current signals
        • Power lines: At least 2-3 mm (80-120 mils), depending on current
        • Copper thickness: 35 µm (1 oz/ft²) is standard, but for higher currents, you can use thicker copper like 70 µm (2 oz/ft²) or more.

        4. Via Clearance in Copper Pours

        • Standard via clearance: 0.2 mm (8 mils)
        • High-current via clearance: 0.5 mm (20 mils)

        Clearance should be adapted to the board’s layer stack-up and current needs.

        5. Thermal Relief Spokes

        • Spoke width: 0.3 mm to 0.5 mm (12-20 mils)
        • Spoke count: Typically 4 thermal relief spokes per pad
        • Clearance to pad center: 0.5 mm (20 mils)

        6. Copper Pour to Board Edge Clearance

        • Standard clearance: 0.5 mm (20 mils) from the board edge
        • High-voltage boards: 1 mm (40 mils) or more

        Layer Placement of Copper Pours

        Copper pours can be placed on any layer of a PCB. In multi-layer PCBs, copper pours are often added on internal layers to maximize performance. For example, ground and power pours are frequently found on internal layers to reduce noise and improve thermal dissipation.

        On outer layers, copper pours serve to enhance thermal management. They distribute heat from high-power components and help maintain an even temperature across the board. It’s important to balance the placement of copper pours with other components to ensure overall board stability and functionality.

        What is Pour Board? What is Copper Pour in PCB?

        Copper Pour PCB Design Considerations

        1. The open areas in the design must be minimized and the open Spaces filled with copper.

        2. It’s important to assess the current-carrying capacity. Make sure the copper pour is thick enough to handle the expected current loads, especially in power applications.

        3. If there is no room for the copper, the two wires, the two pads, and the distance between the wires and the pads are designed to be 2 ounces thick with a minimum spacing of 8 mil.

        4. When pouring copper, keep a certain distance from the ordinary touch pad. The distance between the track, the common plane and the drilled area should be greater than 0.5 mm. The copper must be poured as firmly as possible. Avoid pouring copper on small grids.

        5. The inner layer of the gold finger must be all poured copper to avoid thinning of the board at the gold finger. Avoid choosing laminated structures with thin plates.

        6. Those thin long, poorly grounded ground copper will have an antenna effect, which will cause poor EMC problems. Therefore, we should try to avoid causing broken copper when coating copper, such as causing broken copper can be removed.

        7. Isolated (dead zone) copper problem, isolated copper if relatively small equivalent to broken copper can be deleted. If it is large, it can be defined as a place to add through the hole treatment, at this time there is no isolated copper.

        8. Refer to the product design manual and apply copper coating near the antenna. Any interference or interference with the antenna must be avoided when pouring fake copper.

        You may also like

        How to Calculate Current Carrying Capacity in PCB Vias?
        Thursday, September 5th, 2024

        What are vias in PCB design?

        Via hole is one of the important components of multi-layer PCB, and the cost of drilling usually accounts for 30% to 40% of the PCB board cost. Simply put, every hole on the PCB can be called a pass hole. From the function point of view, the hole can be divided into two categories: one is used as an electrical connection between the layers. The second is used as the fixing or positioning of the device.

        How to Calculate Current Carrying Capacity in PCB Vias?

        From a manufacturing process perspective, vias can be divided into three types: blind vias, buried vias, and through vias:

        • Blind vias: These connect the surface layer to an internal layer, without going through the entire board. Their depth is typically related to the hole diameter.
        • Buried vias: Located inside the PCB, they don’t reach the surface.
        • Through vias: These pass through the entire board and are the most common due to their lower manufacturing cost and simpler process.

        How to make PCB vias?

        Typically, PCB vias are produced following the IPC-2 standard, where the copper thickness in the hole is around 0.8 mil to 1 mil. However, in practice, the copper plating might not be uniform, and the thinnest part could be as narrow as 0.7 mil, affecting the current-carrying capacity.

        Generally, the conventional PCB board is produced according to IPC-2 standard, where the copper thickness in the hole is around 0.8 mil to 1 mil (you can check the specific content of the IPC-2 standard). The hole that we think is produced during production is this ideal situation (as shown below), the size of the hole is regular, and the thickness of the hole copper is very symmetrical:

        How to Calculate Current Carrying Capacity in PCB Vias?

        However, in practice, the copper plating might not be uniform. As you can see, the copper plating thickness of the perforated wall of the PCB produced in general may be wide up and down, and narrow in the middle, so the narrowest limit may be 0.7mil. It can be imagined that if the current carrying situation is evaluated, it should be calculated according to the smallest and smallest cross-sectional area, but the smallest cross-sectional area is deviated from the actual design value. But actually, a good PCB manufacturer can help to save much time and money for you, you can see the via holes cross-sectional made by Best Technology and others.

        How to Calculate Current Carrying Capacity in PCB Vias?

        What Is the Current Carrying Capacity of a Via?

        The current-carrying capacity of a via refers to the maximum current it can safely handle. In PCB design, vias are essential components that connect traces between layers, and their size and shape directly impact how much current they can carry. Factors affecting current capacity include via diameter, number of vias, and placement.

        The current carrying capacity of a via hole refers to the current that can be safely carried by the hole. In PCB design, the hole is a key component connecting the layers of printed wires. Their size and shape directly affect the ability of current to pass through. The current carrying capacity of the hole is not only related to the diameter of the hole, but also affected by the uneven current distribution. That is, when multiple holes are actually placed, the current distribution is not equal, which is related to the distribution, quantity and location of the hole. Therefore, evaluating the current carrying capacity of the holes requires consideration of a variety of factors, including the size and number of holes, and their layout on the board.

        For instance, a 12 mil via can safely carry around 1.2A of current. However, increasing the via size (e.g., to 16 mil, 20 mil, or 24 mil) doesn’t necessarily yield a proportional increase in current capacity. A recommended via size for optimal current handling is 10-12 mil.

        In some cases, the current carrying capacity of the through hole can be evaluated by DC simulation software, such as using tools such as Allegro’s IR Drop. These tools can help designers more accurately predict and optimize the performance of the board.

        How to Calculate Current Carrying Capacity in PCB Via?

        The current-carrying capacity of a via can be simplified by using a trace model calculation. The formula is:

        I = 0.048 * T^0.44 * A^0.75

        Where:

        I is the maximum allowable current in amperes (A).

        T is the maximum temperature rise in degrees Celsius.

        A is the cross-sectional area of the via, measured in square mils.

        For the cross-sectional area of the via: A = π * (D + Tk) * Tk

        Where:

        D is the via’s diameter.

        Tk is the copper thickness, typically around 20 μm (0.8 mil) according to IPC-2 or IPC-3 standards.

        In high-density interconnect (HDI) boards, due to manufacturing constraints, the copper thickness may be reduced to as low as 10 μm.

        PCB Via Current Calculator Per IPC 2152

        IPC-2152 replaces the 50-year-old IPC-2221B standard. IPC-2221B identifies in a series of diagrams the connection between the PCB’s temperature rise, the current in the track, and the cross-sectional area of the track without multilayer boards.

        IPC-2152 outlines the relationship of thermal conductivity, through hole, board material, and thickness to current, trace cross section, copper weight, and temperature. It can also determine the exact values of external and internal traces. IPC-2152 is not only a real-time protection program, but it also helps PCB designers model safe and appropriate designs. The Best Technology Wire Width and current Capacity calculator is based on this standard. You can calculate the trace area and current capacity for a given temperature rise.

        The figure below is the calculation chart of the cross-sectional area of the through-hole given by IPC 2152. The formula of the cross-sectional area of the through-hole wall in the above figure is transformed, where D is the empty outer diameter, D is the inner diameter of the hole, and (d-d)/2 is the thickness of the hole wall, also known as the through-hole copper thickness. Where D is the empty outer diameter, D is the inner diameter of the hole, and (d-d)/2 is the thickness of the hole wall, also known as the thickness of copper through the hole. The copper thickness through the hole is not determined, and the copper thickness of each PCB manufacturer may be different. If you want to pass a larger current through the hole, it may be better to punch several more through the hole.

        How to Calculate Current Carrying Capacity in PCB Vias?

        Then you can get a new formula of calculating cross sectional area of hole wall:

        How to Calculate Current Carrying Capacity in PCB Vias?

        A typical example is calculating the via size based on a 20°C temperature rise and a 1A current.

        Given:

        Copper thickness of 1 oz (1.38 mil)

        Current carrying capacity of 1A

        Maximum temperature rise of 20°C

        From the IPC-2152 Conservative Chart, the cross-sectional area corresponding to these conditions is 28 mil². Using the equation for the via’s cross-sectional area, you can calculate the via’s diameter.

        From the chart, the required cross-sectional area is 28 mil².

        The copper thickness is 1.38 mil.

        Solving for the via diameter, we get:

        d = 7.28 mil (0.185 mm)

        Thus, a via with an internal diameter of 0.185 mm will safely carry a 1A current with a 20°C temperature rise.

        Best Technology’s Via Current Capacity Calculator

        Best Technology offers a current capacity calculator for PCB vias to ensure that designs meet specific current-carrying needs. The tool allows designers to input their parameters, such as via diameter and copper thickness, and outputs the current-carrying capacity value. Clik below image to use or click here: via current capacity calculator

        How to Calculate Current Carrying Capacity in PCB Vias?

        You may also like

        What are the types of PCB boards?
        Monday, August 26th, 2024

        PCB (Printed Circuit Board) boards can be classified according to their constituent materials and characteristics. PCBs are classified into single-sided boards, double-sided boards, and multi-layer boards according to board applications. They are classified into flexible PCB boards (flexible boards), rigid PCB boards, rigid-flexible PCB boards (rigid-flexible boards) according to materials, etc.

        PCB is an important electronic component, a support for electronic components, and a provider of electrical connections for electronic components. Since it is made using electronic printing technology, it is also called a printed circuit board. PCB is simply a thin board with integrated circuits and other electronic components.

        1. Single-sided board:

        On the most basic printed circuit board, parts are concentrated on one side and wires are concentrated on the other side. Because wires only appear on one side, this type of printed circuit board is called a single-sided board. Because single-sided boards have many strict restrictions on designing circuits (because there is only one side, wiring cannot cross and must go around a separate path), early circuits used this type of circuit board.

        2. Double-sided board

        What are the types of PCB boards?

        This type of circuit board has wiring on both sides. In order to connect the wires on both sides, there must be a proper circuit connection between the two sides. This connection between the circuits is called a guide hole. A guide hole is a small hole filled or coated with metal on a printed circuit board, which can be connected to the wires on both sides. Because the area of a double-sided board is doubled that of a single-sided board, and the wiring can be interlaced (can go around to the other side), double-sided boards can be used on more complex circuits than single-sided boards.

        3. Multilayer board:

        In order to increase the area that can be wired, multilayer boards use more single- or double-sided wiring boards. Multilayer boards use several double-sided boards, and put an insulating layer between each layer of boards and glue them firmly. The number of layers of the circuit board represents how many independent wiring layers there are, usually an even number of layers, and includes the two outermost layers.

        4. Flexible PCB board

        Flexible PCB board is a printed circuit board made of a flexible substrate. Its advantage is that it can be bent, which is convenient for the assembly of electrical components. Flexible circuit board, flexible PCB, flexible circuit and multi-function printed circuit are other names for these circuit boards. These printed circuit boards are made using the same components as rigid printed circuit boards. The main difference is that the circuit board is designed to bend to the desired shape throughout the application process. These PCBs are available in single-sided, double-sided, and multi-layer configurations. This helps reduce the complexity of unit assembly.

        5. Rigid PCB Board

        Rigid PCB is a circuit board that cannot be twisted or folded. The base material of the board is a rigid substrate, which gives the board rigidity and strength. They are composed of multiple layers, including substrate layers, copper layers, solder mask layers, and silk screen layers, which are bonded together by adhesives and heat. While some circuit boards are single-sided, double-sided, or multi-layered, rigid PCBs can be any of these as needed. However, once made, they cannot be modified or changed.

        6. Rigid-Flex Board

        Rigid-Flex Board is a hybrid circuit board that combines elements of flexible and rigid circuit boards to form a foldable or continuously bendable circuit board, which is usually molded into a curved shape or curve during the manufacturing process.

        What are the types of PCB boards?

        The flexible portion of the circuit board is often used for interconnections between rigid circuit boards, allowing narrower wires to take up less space, thereby reducing the size of the circuit board. Using flexible PCBs for interconnections often eliminates the need for bulky and heavy connectors, making rigid-flex boards lighter. The design of rigid-flex boards is slightly more complicated because these boards are 3D constructed, allowing the board to be folded or twisted to produce the shape required for the product.

        7. High-frequency PCB board

        High-frequency circuits refer to the overall circuit board design, not the other types of circuit board structures we described earlier. These PCBs are designed to conduct signals over 1 GHz.

        High-frequency boards mostly use FR4-grade glass-reinforced epoxy boards, polyphenylene ether (PPO) resins, and Teflon, but Teflon has a low and stable Dk value, low dielectric loss, low hygroscopicity, and is slightly more expensive.

        When designing high-frequency circuits, various factors must be considered, such as Dk value, dissipative loss, and dielectric thickness. The DK value of the substrate is an important factor to remember. Substrates with a higher probability of Dk value changes usually experience impedance changes, which affects the harmonics that make up the electrical signal, resulting in poor signal integrity.

        8. Copper substrate

        Copper substrate is a metal substrate with high thermal conductivity, suitable for high-frequency circuits and areas with large high and low temperature changes and heat dissipation and architectural decoration industries for precision communication equipment.

        The copper substrate circuit layer requires a large current carrying capacity, and a thicker copper foil should be used, with a thickness of generally 35μm~280μm. The thermal conductive insulation layer is the core technology of the copper substrate. It is composed of core thermal conductive components and high molecular polymers, with low thermal resistance (0.15), excellent viscoelastic properties, resistance to thermal aging, and the ability to withstand mechanical and thermal stress.

        The copper substrate metal base is the supporting member of the copper substrate, which is required to have high thermal conductivity. It is generally a copper plate, and a copper plate can also be used (where the copper plate can provide better thermal conductivity). It is suitable for conventional mechanical processing such as drilling, punching and cutting.

        9. Aluminum-based PCB board

        The design of aluminum-based PCB circuits is similar to that of copper-based PCBs, but the substrate material of aluminum-based PCBs is aluminum metal, rather than the standard glass fiber used in most circuits.

        What are the types of PCB boards?

        The aluminum layer is reinforced with the least heat-resistant insulation material, which means less heat is transferred from the insulation material to the backing. After applying the insulation layer, another layer of copper is required.

        10. High Density Interconnect (HDI) PCB

        Among the many types of PCBs, HDI PCB is a circuit with multiple interconnections that takes up very little space. HDI components are mounted close to each other, minimizing PCB space while maintaining high functionality. Boards containing 120-160 pins per square inch are classified as HDI PCBs.

        HDI designs integrate dense device mounting and multi-purpose wiring. With the help of microvias, buried vias, and blind vias, compact circuits can be made, minimizing drilling to copper. For the electrical requirements of high-speed signals, HDI PCBs must have high-frequency conduction capabilities, impedance control, and minimal redundant radiation.

        11. Thick Copper PCB

        Thick copper PCB is also called heavy copper PCB. Basically, it contains more than 2 ounces of copper in the inner and outer layers of the board. Heavy copper transmitters significantly increase the overall thickness of the board; thick copper boards are known for supporting high currents, high temperatures, and cyclical thermal cycles.

        12. High TG PCB

        Among various types of PCBs, high Tg PCBs are circuit boards designed to work at high temperatures. Glass transition temperature (Tg) is an essential element of any epoxy resin. It is basically the temperature point at which the polymer changes from a hard glass substrate to a soft rubber substrate. The substrates used to make high Tg circuit boards must be flame retardant, which means that they soften instead of burning at the glass transition point (Tg).

        The higher the Tg value, the higher the temperature requirement during lamination. Under such conditions, the PCB will become hard and brittle, affecting the aperture size and related electrical properties. Standard boards will soften, deform and melt under such conditions, and their mechanical and electrical properties will be significantly reduced.

        Standard FR-4 Tg is between 130-1400C, medium Tg is between 150-1600C, and high Tg is above 1700C. The higher the Tg value, the better the board’s heat, moisture and chemical resistance.

        Conclusion:

        PCB board types are updated and iterated with the rapid development of the industry, and various types of PCB boards have gradually evolved to cope with various application scenarios, adding corresponding materials according to the required performance. BEST Technology has various PCB types of manufacturing technology, which can meet your any type of PCB needs.

        You may also like