Archive for the ‘best pcb’ Category

Why Consider Even-Number Multi-Layer PCBs For Your Project?

Tuesday, March 7th, 2023

With the great demands about high-tech electronic equipment, although the single sided PCB or double-sided printed circuit boards have their advantages, multi-layer designs are more beneficial for some applications, that’s why the more and more popular and wide usage of multi-layer PCBs.

(Multilayer_PCB)

Currently in the market and electronic industry, almost of the multi-layer PCB have an even number of layers such as 8, 10 or 12 layers, why designers didn’t consider an odd-number layers? Today let’s explore the reasons together.

  • Higher cost spent

Normally the standard layers of a multi-layer PCB in the industry are even-numbers, and as the manufacturing technology becomes more and more mature, the cost of fabricating a multi-layer PCB is relative competitive.

But if you want to produce odd-numbers PCB, may the odd-number layers save the cost of material for one layer but the processing cost increase significantly to an even-numbers. Because the core structure requirement for odd layered PCB increases the production cost greatly. However, an even layered PCB can save these costs and reduce the overall manufacturing cost, so why not consider the even number layers?

  • Long lead time

Long delivery time is unescapable because of the immature fabricating technology. In particular with the odd-layer, the stack up will be unbalance. For example, if it’s an odd layered circuitry, due to the standard symmetrical requirement, the layers will be separated to 2 layers in a one side and another side is 3 layers, so one of the copper layers will be etched away and the odd layered PCB may create uneven weight during the copper plating stage and result in irregular plating issues. This non-standard, odd-layered stack requires an extra core process for layer bonding and adds to the manufacturing time and cost. So, it’s always recommended to use an even number of layers in the PCB stack-up.

  • Potential quality issue

Quality is very important and crucial for end-application, and the best reason of why not design an odd-number multi-layer PCB is the odd-number layers PCB is very easy to get twist due to the unbalance copper layers. When the PCB is cooled after the multi-layer circuit bonding process, the different lamination tension between the core structure and the foil structure can cause the PCB to bend when cooled. As the board thickness increases, the risk of bending becomes greater for composite PCBs with two different structures.Ā  The key to eliminate circuit board bending is to use balanced layering.Ā  Although PCBs with a certain degree of bending meet the specification requirements, subsequent processing efficiency will be reduced, resulting in increased costs. Because assembly requires special equipment and technology, the accuracy of component placement is reduced, so the quality will be damaged.

In addition, the twist of an even-number layers PCB can be controlled below 0.7% (IPC 600 standard), but odd layers unable to reach to this quality standard. What’s more, when the warpage of a circuit board greater than 0.7% will seriously affect the operation of Surface Mounted Technology (SMT) process and the reliability of the whole product. Therefore, the designers do not design odd layer generally, even if the odd layer enables to achieve the function, will be designed into false even layer, that is, 5 layers designed into 6 layers, 7 layers designed into 8 layers of board.

Anyway, more layers it is, more complex & difficult the manufacturing will be, and more expensive the cost will be, and the lead time of multi-layer PCB also is different from normal one. So you must choose a right supplier who can provide One-stop service include designing, evaluating, manufacturing or even repairing. Best Technology is an expert in the production of multi-layer PCBs for many companies around the world for over 16 years. Contact us right now and send us inquiries, we are so confident that we can be one of your most reliable suppliers in China.

You may also like

ā€œTEN Q & Aā€ about Ceramic Printed Circuit Board

Monday, February 27th, 2023

Q1: What do the abbreviations DBC and AMB stand for?

A: DBC means ā€œDirect Bond Copperā€ while full name of AMB is ā€œActive Metal Brazedā€. Both abbreviations refer to bonding technology of attaching a relatively thick copper (generally more than 0.2mm) on the ceramic substrates. These two technologies can be used to fabricate metalized ceramic substrates.

Q2: What is the mainly difference between DBC and AMB?

A: The mainly difference is AMB need to braze the copper to a ceramic board by active metal while DBC can directly connect the copper and substrate without any additional materials.

Q3: Which kind of ceramics are suitable for DBC and AMB?

A: DBC technology is suitable for oxide ceramics such as Al2O3 and ZTA. Non-oxide ceramics must be oxidized before they can be bonded to copper by DBC technology. ALN can be made into DBC or AMB ceramics, but Si3N4 only can be used as AMB substrates.

Q4: What is the function of metalized ceramic PCB?

The metallized ceramic substrate needs to carrier and interconnect multiple power semiconductor devices. The resulting electronic components are called power modules or multi-chip packages, most commonly LED packages or semiconductor packages.Ā 

Q5: Does AMB can be used with oxide ceramics?

A: Yes, but the effective of DBC technology is better and the cost is relatively lower.

Q6: What is the most important performance need to be considered when design a new ceramic PCB?

A: It depends on the end application of product will be used in. Ceramics are chemically inert substances that are resistant to corrosion, moisture, and high temperatures, making them preferable to organic dielectrics that degrade in corrosive environments. Electrical, thermal and mechanical properties are equally important in the design of a new substrate. Dielectric strength is an important factor to meet the isolation requirements, which should be set according to the standards, specifications and regulations of the target application. Low thermal conductivity is not conducive to the heat transfer between the chip and the surrounding environment. The bending strength and fracture toughness play an important role in prolonging the service life of the substrate under thermal-mechanical stress.

Q7: How to choose a suitable substrate?

A: First, the heat dissipation of power semiconductor devices should be understood. Then, based on the chip and the ambient temperature, the required substrate thermal resistance is calculated. However, the combination of copper and ceramic may not always achieve the desired thermal resistance.Ā  For one thing, the isolation voltage determines the minimum thickness of the ceramic. On the other hand, the thickness ratio of copper to ceramic has a great effect on the reliability. Finally, the set of applicable standards will be very limited.

Q8: Are DBC and AMB substrates suitable for high voltage applications?

A: The DBC substrate is ideal for applications with operating voltages up to 1.7 kV.Ā  For higher operating voltages, a thicker ceramic layer is required to meet the relevant isolation requirements.Ā  Silicon nitride (ALN) is often used because its high thermal conductivity offsets the increased thickness. In addition, resistance to partial discharge is particularly important in this application. Thus, AMB is superior to DBC techniques for this purpose unless the interfacial gap between copper and ceramics can be eliminated.

Q9: Are DBC and AMB substrates copper plated only on both sides?

A: No, both of two technologies can plate copper only on one side. But this is not a standard combination of materials, however, because the resulting flatness of the substrate is critical in multiple applications.

Q10: What are the shapes of substrates?

A: The rectangle is the cheapest and most common shape to produce. Other shapes are also available, but may incur additional production costs.

You may also like

The Difference Between 2L MCPCB and Double Sided MCPCB

Monday, February 27th, 2023

In our last article, we know what a metal core PCB is, in this post, we will introduce what is the difference between 2L MCPCB and Double sided MCPCB. Please continue to read if you want to know more about metal core printed circuit board.

Today we will explain from these four contents as following:

  1. Stack up (structure)
  2. Heat dissipation
  3. SMD populate
  4. Manufacturing technology

Stack up of 2L MCPCB and Double Sided MCPCB

For a 2L MCPCB, the metal core is positioning on the bottom side of the MCPCB as a cooling carrier to the whole MCPCB, while the metal base of double sided MCPCB is located in the middle of two copper trace. In generally, some PTH (plated-through-hole) vias are needed to designed to connect the bottom and top traces.

Below are the stack ups of these two kinds of products, from the structure, we can easily distinguish which one is 2L MCPCB and which one is double sided MCPCB.

Heat dissipation of 2L MCPCB and Double Sided MCPCB

Due to the different structure of the two products, their heat dissipation performance is also different. The main reason is the heating of double-sided metal core circuits can be spread out through both top and bottom side, while the heating generate by SMD components of 2 layers circuit only can be dissipated through bottom (metal) side and the heat need to go down layer by layer. In addition to this, the dissipation of FR4 is not good than metal materials, so double-sided metal core printed circuits perform better heat dissipation performance than 2 layers MCPCB.

Surface mounted locations (SMD populate)

Nowadays, surface mounted technology (SMT) is widely used in printed circuit board industry, more and more designers prefer to populate electronic components of the circuit surface to achieve high density, stable electrical performance and high reliability. 2L metal core circuit boards and double-sided metal core circuits also show their different mounted locations in this aspect.

The populate location of a 2L MCPCB only available on copper trace side, that is top side. And a double-sided metal core PCB can mount components on both top and bottom side, because both of them exist copper trace on it.

Manufacturing technology

May somebody will curious about ā€œAre these two products produced in the same process/technology?ā€

The answer is obvious ā€œNO, they have a different laminate process when fabricating.ā€

Different with single layer MCPCB, double sided MCPCB requires an additional pressing step to laminate the thermal conductive layer and metal core together. But sometimes, some raw Metal Clad material vendor will supply board material which already laminated.

For 2 layers metal core PCB, due to it is made of a single MCPCB and a double-sided FR4 PCB, the first thing we should make a double sided FR4 PCB, then laminate the PCB together with the single MCPCB. But due to the thermal conductive layer (pure adhesive) is easy to overflow during laminating process, which will cause the poor adhesion and crack between metal core and FR4 PCB. In the meantime, to avoid such problem, an experienced operator is needed to proceed the laminated process. That is why the lead time and cost of a 2 layers metal core circuit is much longer and expensive.

This is the end of this post, if you still have some questions or difficulties about the metal core PCB, welcome to contact us at sales@bestpcbs.com, our professional sales team and engineering team will give you a best solution for free.

You may also like

Do You Know What a Metal Core PCB Is?

Saturday, February 25th, 2023

Metal Core Printed Circuit Board (short for MCPCB) is a technology developed to overcome the thermal limitations of the FR4 Printed Circuit Board. Different with traditional FR4 PCB, the PCB uses FR4 material as base core, while the base material of a metal core PCB is aluminum or copper. So compared with FR4 PCB, Metal Core is a better choice if your boards need to perform in high temperature environment.

What is metal core PCB?

A Metal Core PCB (MCPCB), also known as a thermal PCB or metal backed PCB, is a type of PCB that a metal material as its base for the heating dissipation part of the board. The thick metal is covering one side or double side of the PCB. The purpose of the core of a MCPCB is to redirect heat away from critical board components (such as LED or IC chips), and to less crucial areas such as the metal heatsink backing or metallic core. Base metals in the MCPCB are used as an alternative material to FR4 boards.

(Metal_core_PCB)

Same as FR4 PCB, the metal core PCB can be divided into Single layer MCPCB, Double layers MCPCB and Multi-layer MCPCB.

  • Single layer MCPCB

A single layer MCPCB is consist of a metal base (usually aluminum or copper alloy), thermal conductivity/dielectric layer and a copper trace layer, you can check below stack up for more details. Due to it only has one layer copper trace, sometimes we called it as one-layer MCPCB or single sided MCPCB.

(Stack_up_of_single_layer_MCPCB)

The single sided MCPCB can be used with surface mount and chip & wire components, and provides much lower thermal resistance than FR4 PCB. What’s more, the metal core provides lower cost than ceramic substrates, and allows much larger areas than ceramic substrates.

Meanwhile, superior heat dissipation and good durability of Aluminum of metal core PCB can greatly eliminate heat sinks or other some voluminous hardware for engineers or designers.

  • Double layer MCPCB

Double layers MCPCB (2L MCPCB) has two copper layers on one side of PCB, and metal core as a base core on the bottom side of whole MCPCB, so the components only can be populated on the top side, below is a structure of double layer MCPCB.

(Stack_up_of_double_layers_metal_core_PCB)

From the stack up of double layers MCPCB, we can see it consists of a single layer MCPCB and a double sided FR4 PCB, so it needs an additional pressing process to laminate the thermal conductivity and FR4 PCB. Compared with normal FR4, this structure needs more technology and experience on laminating of two layers together with metal core.

There are two layers copper trace on the surface of MCPCB, can we call it as double sided MCPCB like single layer MCPCB?

The answer is NO, because they have different structure and perform different properties. In our next post, we will show you the differences between double sided MCPCB and 2 layers MCPCB.

  • Multi-layer MCPCB

Same as FR4 PCB, for those copper traces more than 2 layers, we named them Multi-layer MCPCB. Its structure is same as FR4 PCB, but more complex to fabricate. Below is a typical stack up of a 4 layers MCPCB:

(Stack_up_of_4L_MCPCB)

Contrast with single layer or double layers MCPCB, multi-layer MCPCB can populate more components and achieve better performance in electronical performance.

Why Choose Metal core PCB?

Metal core PCB offers a great list of advantages when apply in a high-power application, below we listing some benefits of it:

  • Excellent heat dissipation
  • Lower thermal expansion than FR4 PCB
  • Dimensional stability than polyimide FPC
  • Great durability
  • Long lifetime
  • High utilization rate of space due to the heating can be transferred quickly
  • High strength and lightweight than FR4 PCB
  • Cost-effective

Where can we use Metal core PCB?

Metal core PCB can be used in high-power filed where requires fast cooling, good heat dissipation characteristics, the following popular applications may give you a guideline:

  • LED lighting
  • Power suppliers
  • Power conversion system
  • Automotive electronics
  • Telecom industrial
  • Photovoltaics
  • Semiconductors

With more than 16 years manufacturing experience, Best Technology is one of MCPCB supply leaders in Asia with good metal core PCB capability, we are so confident that we can provide you high quality, fast delivery and excellent one-stop service. Warm welcome to contact us if you have inquiries.

You may also like

What is the DBC Ceramic Copper Oxidation Technology

Monday, February 20th, 2023

DBC (Direct Bond Copper) ceramic PCB also known as DCB ceramic, which is widely used in various type of high-power semiconductor, especially in IGBT package material by means of its excellent electricity and thermal conductivity of copper and the advantages of high mechanical strength and low dielectric loss of ceramics. DBC technology uses the oxygen-containing eutectic solution of copper to directly apply it to the ceramic. The key factor in the preparation process is the introduction of oxygen element, so the copper foil needs to be pre-oxidized in advance. Do you want to know what is the copper foil oxidation technology during the DBC ceramics manufacturing? Hereinbelow, we will introduce the oxidation process for you.

Oxidation technology of copper foil

Copper oxidation is divided into Wet Air Oxidation (including soaking oxidation and spraying oxidation) and Dry Oxidation.  Both oxidation methods can form CuO or Cu2O on the surface of copper foil.

  • Wet Air Oxidation (WAO)

i. Soaking oxidation

First, the copper is pickled with 3% dilute sulfuric acid, and then washed by the spray washing machine after overflow. Next, sent the copper into the mixed solution of potassium permanganate and copper sulfate (the concentration of potassium permanganate is about 31.6mg/L and the copper sulfate is about 95.4mg/L) for soaking and oxidation.  The oxidized copper is then washed with water and three-stage countercurrent washing, and then slowly pulled for dehydration and drying (the temperature is about 100ā„ƒ) to complete soaking and oxidation.

ii. Spraying oxidation

Spraying oxidation is a kind of WAO, only the oxidation method become spraying. Spray oxidation is to spray copper with mixed solution of manganese nitrate and copper nitrate (concentration of about 3%) after pickling and washing.  The sprayed copper is dried directly in the tunnel kiln (the temperature is about 200ā„ƒ).  In the drying process of tunnel kiln, the manganese nitrate and copper nitrate sprayed on the copper sheet are decomposed into copper oxide and manganese oxide.  The ratio of soaking oxidation and spraying oxidation treatment of copper sheet is about 5:5.

  • Dry Oxidation

Dry oxidation is very easy to process, put the copper into oxidation oven firstly, then heating up to 600~800oC for oxidizing around 30mins and then subjected to air cooling annealing.

Wet Air Oxidation VS Dry Oxidation

At present, the existing industry is widely used to finish the high-temperature annealing oxidation of copper then sintering with ceramic substrate, that is dry oxidation.  But this high temperature annealing, oxidation in one way has some drawbacks as following:

  1. Uneven oxidation. It will directly cause sintering defects during sintering, and the peeling strength will change greatly.
  2. Leaving conveyor belt marks.  Because the high temperature and oxidation process is transported by the conveyor belt, the existence of the conveyor belt mesh will affect the temperature distribution of the entire copper is not uniform, leaving marks/traces of the conveyor belt.  The result of sintering is to leave the corresponding trace on the bonding surface of CuAl2O3.
  3. High temperature annealing and oxidation will accompany the grain growth of copper. In the subsequent sintering process, the grain will continue to grow, which brings adverse effects on the mechanical properties and surface treatment of copper.  The copper surface grain produced by wet oxidation is fine, which is conducive to improving the mechanical properties of copper and eliminating the traces of conveyor belt. The main difference between wet oxidation and dry oxidation is shown in the bending resistance, heat resistance cycle performance and peeling strength, and these three indicators are significantly better than dry oxidation. Wet oxidation products can better meet the requirements of bending strength and heat resistance cycle performance.

So, this is the end of this post, Best Technology specialized in fabricating ceramic PCB (including DBC, DPC, AMB, HTCC and LTCC technology) for more than 16 years, we have rich engineering team and professional sales team can provide one-stop service for you. Welcome to contact us if you have any inquiries about ceramic PCB.

You may also like

Everything you should know about Tg in PCB

Wednesday, January 4th, 2023

Working temperature changes can have a significant influence on the operation, reliability, lifetime and quality of products. Temperature rises results in materials expanding, however,Ā the substrate materials that PCB are made ofĀ have different thermal expansion coefficients, this causesĀ mechanical stress that can create micro-cracksĀ that may be undetected during electrical tests carried out at the end of production.

Due to the policy of RoHS issued in 2002 requiredĀ lead-free alloys for soldering. However, removing lead directly results in the rise of melting temperature,Ā printed circuit boards are therefore subject to higher temperaturesĀ during soldering (including reflow and wave). Depending on the chosen reflow process (single, double…), it is necessary toĀ use a PCB with appropriate mechanical characteristics, especially one with suitableĀ Tg.Ā 

What is Tg?

Tg (glass transition temperature) is the temperature value that guarantees the mechanical stability of the PCB during operational life time of the PCB, it refers to the critical temperature at which the substrate melts from solid to rubberized liquid, we called the Tg point, or melting point for easy to understanding. The higher the Tg point is, the higher the temperature requirement of the board will be when laminated, and high Tg board after laminated will also be hard and brittle, which benefits for next process such as mechanical drilling (if any) and keep better electrical properties during use.

The glass transition temperature is hard to be measured accurately in considerate many of factors, as well as each material have its own molecular structure, therefore, different materials have a different glass transition temperature, and two different materials may have the same Tg value even they have different characteristics, this enable us to have an alternative choice when the needed material is out of stock.

Features of High Tg materials

  • Better thermal stability
  • Good resistance to moisture
  • Lower thermal expansion coefficient
  • Good chemical resistance than low Tg material
  • High value of thermal stress resistance
  • Excellent reliability

Advantages of High Tg PCB

In general, a normal PCB FR4-Tg is 130-140 degrees, the medium Tg is greater than 150-160 degrees, and high Tg is greater than 170 degrees, High FR4-Tg will have better mechanical and chemical resistance to heat and moisture than standard FR4, here are some advantages of high Tg PCB for your reviewing:

  1. Higher stability: It will automatically improve the heat resistance, chemical resistance, moisture resistance, as well as stability of the device if increasing the Tg of a PCB substrate.
  2. Withstand high power density design: If the device has a high power density and a fairly high calorific value, then high Tg PCB will be a good solution for heat management. 
  3. Larger printed circuit boards can be used to change the design and power requirements of the equipment while reducing the heat generation of ordinary boards, and high Tg PCBS can also be used. 
  4. Ideal choice of multi-layer and HDI PCB: Because multi-layer and HDI PCB are more compact and circuit dense, it will result in a high level of heat dissipation.Ā  Therefore, high TG PCBs are commonly used in multi-layer and HDI PCBs to ensure the reliability of PCB manufacturing.

When do you need a High Tg PCB?

Normally to ensure the best performance of a PCB, the maximum operating temperature of the circuit board should be about 20 degrees less than the glass transition temperature. For example, if the Tg value of material is 150 degrees, then the actual operating temperature of this circuit board shouldn’t more than 130 degrees. So, when do you need a high Tg PCB?

  1. If your end application requires to bear a thermal load greater than 25 degrees centigrade below the Tg, then a high Tg PCB is the best choice for your needs.
  2. To make sure the safety when your products require an operating temperature equal or greater than 130 degrees, a high Tg PCB is great for your application.
  3. If your application requires a multi-layer PCB to meet your needs, then a high Tg material is good for the PCB.

Applications that require a high Tg PCB

  • Gateway
  • Inverter
  • Antenna
  • Wifi Booster
  • Embedded Systems Development
  • Embedded Computer Systems
  • Ac Power Supplies
  • RF device
  • LED industry

Best Tech has rich experience in manufacturing High Tg PCB, we can make PCBs from Tg170 to maximum Tg260, meanwhile, if your application need to use under extremely high temperature like 800C, you’d better use Ceramic board which can go through -55~880C.

You may also like

How to choose surface finish on Printed Circuit Board?

Saturday, December 17th, 2022

When finish the PCB design, we should choose a suitable surface finish to protect traces from corrosion. Nowadays, the most popular surface treatments for PCB manufacturer to use are HASL/LF HASL, OSP and ENIG.

Different surface treatment has its unique functionality and the cost also is different. This article we will show you the pros and cons of the three surface finishing which use while the PCB manufacturing process.

HASL Surface Finish

HASL (Hot Air Solder Level) can be known as tin-lead HASL and lead-free HASL, it was the mainstream surface treatment technology in the 1980s, but with the increased of ā€œsmall and high densityā€ demands in PCB, there are less and less circuit boards use the HASL technology because it will cause the defective products due to the solder point are easy to leave on the board surface during SMT process. In view of this situation, some PCB board manufacturers or designers prefer use OSP or immersion gold to ensure the good quality products as well as smooth production process.

  • Tin-lead HASL

Advantages:

1) Economical and widely available.

2) Excellent solderability.

3)Better mechanical strength & lustrousness than lead-free HSAL.

Disadvantages: it is harmful to environment and violates RoHS compliance.

  • Lead-free HASL

Advantages: low cost, good solder performance and environmental.

Disadvantages: mechanical strength & lustrousness are not good than lead HASL.

In additional, due to the poor surface flatness of HASL circuit boards, neither leaded nor lead-free HASL is not suitable for soldering fine-pitch components or plated through-holes, because it will cause the short circuits and poor welding during the assembly process.

(LF_HASL)

OSP

OSP (Organic Solderability Preservatives) also named as pre flux, the working principle is to generate a layer of organic film chemically on the copper surface to protect the surface from oxidation or vulcanization in the room environment. Meanwhile, OSP also can increase the oxidation resistance, heat shock resistance and moisture resistance of a PCB. 

OSP is equivalent to an anti-oxidation treatment, the protective thin film can be easily removed by the flux quickly under the high soldering temperature, then it makes the exposed copper surface immediately combined with the molten solder in a very short time to become a solid solder spot.

At present, the usage of OSP surface finishing process has increased significantly because it is appropriated for both low and high-end products. If your application has no surface connection functional requirements or storage life limitations, the OSP process is the most desirable surface treatment process.

(OSP_surface_treatment)

Advantage:

1)With all the advantages of bare copper soldering, expired (more than 3 months) boards can also be resurfaced, but one time is better.

2)Good for fine-pitch, BGA and smaller components.

3)Low cost and easy to rework.

4)Simple process and easy to ensure quality.

Disadvantage:

1)OSP is easily affected by acid and humidity, so must be packed with vacuum.

2)Need to do surface treatment again if storage time more than 3 months.

3)It should be used within 24 hours after unpacking.

4)OSP is an insulating layer, so the test point must be printed with solder paste to remove the original OSP layer for electrical testing.

ENIG

ENIG (Electroless Nickel/Immersion Gold) is one of a chemical nickel gold deposition method, the working principle is to generate a layer of coating by chemical REDOX reaction to get a thicker gold layer. Currently, ENIG is mainly used in the surface of the circuit board with connection functional requirements and long storage life.

Advantage:

1)Can be stored long time as well as no oxidation.

2)Good flatness surface and suitable for small solder point components.

3)Good solderability.

4)Can be used as the base material for COB wire bonding.

Disadvantage:

1)High cost than other two surface treatments.

2)Easy to exist black-pad issue during production process.

(ENIG)

As we can know from above information, each PCB surface treatment has its own merit and demerit, you can choose the one according to the effect you want to reach, as well as your cost. 

If you don’t know which is best for you, you can send inquiry to us, our professional engineering team and PCB sales will choose the suitable one for you. Welcome to contact us if you have any other questions.

You may also like

How To Make PCB Silkscreen on Automatic Silkscreen Printer

Thursday, December 8th, 2022

If you’ve ever learned a printed circuit board, you may see some silkscreen legends printed on the PCB. Silkscreen legend plays an important role in PCB production process. Ā Therefore, the quality of silkscreen also is significant.

(Silkscreen)

Last time we share some acknowledges about silkscreen guideline, today we will introduce how to make PCB silkscreen on the Automatic Silkscreen Printer step by step for you.

Manufacturing processes of printing silkscreen

  • Screen fix

Step 1, we need to fix the screen on the base or workbench with a fixture, and leave 3-5mm distance away from the positioning plate when put the screen.

  • Align and position

Step 2, we need to place the circuit board on the positioning plate with right-angle positioning method or stud registration method (generally use 2 positioning pieces), make it fixed and aligned, then put down the stencil frame and adjust the positioning button, so that the PCB outline is roughly overlapping with screen. Next step, perform initial align boards according to the positioning holes or outline line, then gradually adjust to the optimal position based on pads.

  • Silkscreen ink selection and fine-tune

Step 3, we need to select the silkscreen ink according to the customer requirements, put down the screen frame and poured ink into the screen frame, and then select the length of the appropriate scraper for trial printing sample, and fine-tune the positioning until accurate.Ā 

  • Trial printing

Step 4, we will need to do trial printing the prototypes with transparent character alignment film and check to see if there is a legend deviation, if no, then we can proceed with mass production, but if not, then the positioning should be fine-tuned again, rip off the defective film and affixed with the new one then printing again, repeat trail until qualified.

(Trail_printing_inspection)
  • Screen printing (manually)

Step 5, let’s place the circuit board (which have finished surface treatment process) on a fixed position, put down the screen frame, and then hold the scraper with both hands, at an Angle of 50°- 60 ° with even force on the scraping screen surface from front to back or from back to front. The printing material is subjected to the pressure of the scraper through the printing mesh hole and printed on the circuit board. After the scraper passes through, the screen recovers by its own tension. After the scraper is finished, the screen frame is lifted, and the sealing screen printing material is scraped back.

  • Screen printing (auto printer)

Step 6, the Angle of the scraper is an external “eight” font, usually between 20-30 degrees, you can choose the printing times according to the actual needs.

(Auto_printing)

In the past, most of the factories make the screen printing manually, it is time consuming and limited to relatively short lengths of 60 yards. So, in our manufacturing line, we have imported the automatic flat-bed screen printing.

Automatic_Silkscreen_Printer

Here I would like to share some features of the PCB silkscreen printer with you:

Features of Auto-Printer

  • High speed: the automatic screen printer has its own unique frequency conversion speed regulation device, the printing speed can be adjusted from 20 to 70 times per minute auto screen printing machine.
  • Cost-effective: the auto printer has its own electronic counter, which can automatically shut down according to the pre-designed total number, saving a lot of manpower and ink material.
  • Good quality: the automatic screen printer is very accurate in point and color, because it is equipped with a multi-color printing electric eye device, which can improve the quality of printing.
  • Good adhesive: the adhesion of the screen machine is very good, and the ink layer is relatively thick, so the text legend is not easy to fade.
  • Multi-aspect: the fully automatic screen printer can not only be used alone, but also can be connected to a UV dryer, or a slitting machine, a reminder, and other auxiliary machines.

With the help of Automatic silkscreen printer, we are able to provide ā€œfasterā€ and more ā€œefficientā€ service to our customers, warmly welcome to contact us, we are ONLINE always!

You may also like

Why Printed Circuit Boards are Important for Electronics?

Wednesday, December 7th, 2022

Printed Circuit Boards are the core of the electronics devices, and they exist in everywhere and be everything from your electronic equipment such as mobile phone, computers, so what are they? Let’s explore the secrets together and know why they become more common as technology advances.

What are Printed Circuit Boards?

A printed circuit board also known as PCB for short, is an electronic board for connecting metal circuits by mounting different electronic components in a device and have it do its functions.

PCB is made of fiberglass and laminate materials or a composite epoxy with conductive, it can be made to varies shapes and sizes depends on what applications it will be used for—some have many holes on it while some only have several pads or traces.

In most of devices, we can see there are many components or wires mounted or connected on the surface of PCB, which comes into two different pathways –surface mount and through-hole. Surface mount is a technology that can be abbreviated as SMT, it is a famous technical that mount electronic components (typically SMDs) attached on top of a pad by melted solder paste. Through-hole generally refers to components that have wires through the plated-through-holes that drilled into the circuit board. Both ways are commonly use, but currently with the fast development of the technology advance, surface mount is more popular than through-hole as it is more convenient for production.

What the Functions of Printed Circuit Boards?

The main functions of a PCB is to connect different components and achieve a communication between components and devices, that can be used for everywhere you can think of – Computer, phones, televisions, tablets, cameras, projectors, and so on….

For a simple example, a phone has a PCB that can connect screen, the buttons, cameras, and the circuits on the both sides. Without this board, those components wouldn’t be able to transmit signals and talk to each other and the phone would cease to function.

In addition, electronic equipment using printed board enable to avoid the error of manual wiring, and can realize the automatic insertion or installation of electronic components, automatic soldering, automatic detection by communicate with each other, to ensure the quality of electronic products, improve labor productivity, protect components from damaged, reduce costs, and easy to maintenance.

The advantages of Printed Circuit Boards

PCB performs a number of advantages in electronic industries, a most significant feature is they make products be smaller and more portable as its density circuits and components communication. The density circuits on PCB allows it take up much space for components so you can get a smaller product.

  • High density

Over the past decades, the high density of printed boards has been developed with the improvement of integrated circuits and the advancement of installation technology.

  • High reliability

Through a series of checks, tests and aging tests, the PCB can be guaranteed to work reliably for a long time (generally 20 years).

  • Designability

For various performance (electrical, physical, chemical, mechanical, etc.) requirements, can PCB be achieved to such requirements in short time and high efficiency according to design standard rules.

  • Maintainability

By means of standard PCB design rules, once the program or device failure, users fix the devices quickly.

  • Cooling abilities

Overheating is one of the biggest reasons of electronics failure, so by keeping them cool with a PCB, you can increase the lifetime of your product.

Types of Printed Circuit Boards

Best Technology provides different kinds of PCBs and PCBAs for our customers, for a quickly reviewing, we listing as below:

  • Rigid Printed Circuit Board (FR4-PCB)
  • Flex Printed Circuit Board (FPCB)
  • Rigid-Flex PCB
  • Metal Core Printed Circuit Board (MCPCB)
  • Ceramic Board
  • SinkPAD Board
  • Other special PCB such as heavy copper PCB, HDI PCB, RF PCB, and so forth
  • PCB assembly

In a word, with the development of electronics, it’s necessary to have a functional part like the PCB that can keep up with the demand. Next step, contact us if you have PCB demands.

You may also like

Differences Between Solder Mask and Solder Paste in PCB

Wednesday, December 7th, 2022

When it comes to solder mask and solder paste, there are some engineers confused about their functionalities and even most of laymen thought they are the same, this is not hypothetical, it is real that happened to me. So today let’s explain differences between Solder Mask and Solder Paste for you.

Part 1: What is Solder Mask?

If you had ever seen a printed circuit board, you may see there is a layer of green ink cover on the PCB surface while some orange-yellow areas didn’t cover by ink. In PCB industry, the green ink we called Solder Mask, or abbreviated as S/M, and exposed area is copper, they were leave as GND plane or soldering pads to mount electronic components.

Solder mask is a liquid acrylic oligomer, which has variety of colors such as red, blue, green, white, black. Green is commonly used in the process of PCB manufacturing, so some professional engineers call it as green oil.

Solder_mask

Solder mask applied on the PCB designed as a protection layer to avoid oxidation, corrosion and other environmental impacts when they leave production line. In addition, solder mask between solder pads also can help to prevent forming to solder bridge when assembly.

Below are some other functions of coating a layer solder mask:

  • Prevent physical line breaking of copper trace
  • Only weld in the area that must be soldered to avoid waste of soldering
  • Reduce copper pollution to soldering groove 
  • Prevent insulation deterioration and corrosion caused by dust, moisture and other external environmental factors 
  • With high insulation, so that the high-density circuit is possible

Part 2: What is Solder Paste?

Solder Paste also known as ā€œSolder creamā€, is a most important soldering material used in surface mount technology (SMT) process. Mainly function for soldering resistors, capacitors, ICs and other electronic components onto the PCB surface to form a permanent connection.

The solder particles are a mixture of solder formed by mixing solder powder, flux and other surfactants and thixotropic. Traditionally this used to be tin and lead, but with the legislation has been introduced around the world, to only use lead free solders. These may be made from a variety of mixtures, Best Technology commonly used is SAC305 which includes 96.5% tin, 0.5% copper and 3.0% silver, some manufacturers also use 99.7% tin and 0.3% copper, whereas there are other mixtures that include other metals including tin.

Due to the role of solder paste in assembly, solder paste storage is extremely important. However, solder paste got into drying during storing became a common problem faced by most PCBA manufacturers, so How to solve solder paste dry problem is premier.

Solder_paste

Part 3: The Difference Between Solder Mask and Solder Paste

  1. Solder mask is a formal part of PCB, but solder paste ONLY for PCB assembly.
  2. Solder mask is not allowed on the solder pads while solder paste can be printed on the solder pads openings.
  3. Solder mask is used for applying solder mask ink, but solder paste is used for applying paste.
  4. Solder mask has many available colors, but paste mask visually gray.
  5. Solder mask is coating during PCB fabrication, but solder paste is printing when PCB assembly.

With over 16 years in PCB industry, Best Technology is one of the most reliable PCB and PCBA supplier in Asia, we commit to provide high quality products with excellent service before and after sales, to take care our customers wholeheartedly, and to treat customers’ business as ours. At the same time, we keep learning and continually to improve ourselves so that we can catch up the latest technology trend and provide better and better service for our customers.

You may also like